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Abstract

Caller abandonment could depend on their past waiting experiences. Using Cox regressions

we show that callers who abandoned or waited for a shorter time in the past abandon more in

the future. However, Cox regression approach does not shed light on callers’ prior belief about

the duration of their delays. Moreover, Cox regressions cannot separate the impact of callers’

parameters such as their waiting costs on their abandonment behavior from the impact of their

beliefs about their delay durations, which are affected by their past waiting experiences. To

tease out the impact of callers’ waiting experiences on their abandonment behavior, we use a

structural estimation approach in a Bayesian learning framework. We estimate the parameters

of this model from a call center data set with multiple priority classes. We show that in this

call center new callers who do not have any experience with the call center are optimistic about

their delay in the system and underestimate its length irrespective of their priority class. We

also show that our bayesian learning model not only has a better fit to the data set compared to

the rational expectation model in Aksin et al. (2013), Aksin et al. (2017) and Yu et al. (2017)

but also outperforms the rational expectation model in out-of-sample tests. In addition, our

bayesian framework does not lead to biased estimates, which would happen under the rational

expectation assumption if callers’ belief about their waiting durations does not match their

actual waiting time distribution. Our bayesian framework has managerial implications at both

tactical and operational levels such as managing customer expectation about their delays in the

system, and implementation of patience-based priority policies such as Least-Patience-First and

Most-Patience-First scheduling.

1 Introduction

The service industry has grown extensively and consists of more than 75% of the gross domestic

product of the United States.1 Call centers are a major channel for providing different types of

services to customers employing nearly 3 million people (Czinkota and Ronkainen (2012)). Design-

ing modern call centers requires understanding of callers’ patience level and their abandonment

behavior. This can be achieved by analyzing callers’ contact data. Majority of call centers utilize

sophisticated management software that records details of customers’ contact information includ-

ing: customer ID, requested service, waiting time, outcome of the call (abandonment/receiving

service), service time, etc. Therefore, when a caller contacts the call center, the call center manager

1Source: http://data.worldbank.org/
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can identify if the caller is a new caller or if she has contacted in the past, and if it is the latter

what happened during the previous call or calls. In other words, the call center manager has access

to callers’ contact history information and their past interactions with the system.

Customers’ past interaction data can be very useful as demonstrated in other industries. For ex-

ample, retailers use customers’ past purchase history to offer customized coupons and deals (Rossi

et al. (1996)). In the call center literature researchers have studied how call center data can be used

to estimate the distribution of callers’ patience parameters such as their patience threshold and

their waiting costs (Gans et al. (2003), Brown et al. (2005), Aksin et al. (2013), Aksin et al. (2017)

and Yu et al. (2017)).2 Using the methods in this literature, one can say that a caller’s patience

parameter is a draw from a distribution, but one cannot identify the patience parameter for a

specific caller. Moreover, in the above literature, callers’ contact history information is disregarded

in the sense that all contacts of a caller are treated the same irrespective of their sequence and

whether the contact is the first one or the caller has contacted in the past. In this paper, we lay

out a framework to understand callers’ individual abandonment behavior based on their contact

history data and changes in their behavior across their different contacts. This framework gives

the call center manager information about each caller’s patience level and her expectation about

the system delay based on the caller’s contact history.

To investigate if callers’ abandonment behavior depends on their past waiting experiences, we

use a series of Cox regressions (Hosmer et al. (2008)). The regression results show that callers’

abandonment behavior is indeed history dependent, and that callers who abandoned or waited for

a shorter time in the past are more likely to abandon in subsequent contacts. However, the Cox

regression does not give us any information about callers’ prior belief about their delay durations

in the system. In other words, using the Cox regressions we do not know how new customers

who do not have any experience with the system think about the service quality in terms of delay

durations. In addition, the Cox regression results do not explain the underlying model for callers’

abandonment behavior. In particular, it is not clear if callers who abandon more frequently com-

pared to other callers, have intrinsically higher waiting costs, or if they frequent abandonments are

driven by their beliefs about the waiting time durations, which may not be short based upon their

past experiences. Consequently, it is not clear if the difference in callers’ abandonment behavior is

driven by their heterogeneity of preferences (e.g. different waiting costs) or by their different contact

histories, which led to different abandonment behaviors. If we could separate the impact of callers’

patience parameters on their abandonment behavior from the impact of their contact history then

we will be able to find each caller’s belief about the waiting time duration independent of their

intrinsic parameters. This separation could help in counterfactuals on the priority policy because

changing the priority policy in the call center would not affect callers’ parameters but would change

their future waiting experiences and how those experiences affect their abandonment behavior.

To disentangle the impact of caller parameters such as their waiting costs from the impact of

2A caller’s patience threshold is the amount of time she is willing to wait in the queue. Consequently, if her actual
waiting time exceeds her patience threshold, she abandons.
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their contact history we use a structural estimation approach in a Bayesian learning setting. Similar

to Aksin et al. (2013), Aksin et al. (2017) and Yu et al. (2017), we use an optimal stopping model for

callers’ abandonment behavior. We assume that in each period of time callers compare the expected

utility of waiting and the expected utility of abandonment. They wait if the expected utility of

waiting is higher than the expected utility of abandonment and abandon otherwise. Callers’ utilities

depend on three factors: their waiting cost, their value for service and their expectation (belief)

about the waiting time distribution. In contrast to the extant literature (Aksin et al. (2013), Aksin

et al. (2017) and Yu et al. (2017)), we do not adopt a rational expectation framework in which it

is assumed callers know the actual waiting time distribution irrespective of their past experiences

with the call center. Under the rational expectation framework it is assumed that even new callers

who never contacted the call center before know the waiting time distribution. This is a strong

assumption and may not be realistic.

In our setting, callers’ beliefs about the waiting time distribution depend on their prior belief

and their past waiting experiences through a Bayesian updating framework. In particular, we as-

sume callers believe that the waiting time distribution is Weibull. Callers know the shape parameter

of this Weibull distribution. However, they update their beliefs about its scale parameter while

waiting in the queue. We choose the Weibull distribution as a special case of “newvendor distribu-

tions” identified by Braden and Freimer (1991) to make the bayesian updating in the presence of

censoring (abandonment in our case) tractable. The class of “newvendor distributions” has been

used extensively in the literature in the context of bayesian learning in the presence of censoring

(see Mersereau (2015), Lariviere and Porteus (1999) and Heese and Swaminathan (2010)). To ac-

commodate the conjugate prior scheme, we assume that callers’ belief about the scale parameter of

the Weibull distribution for the waiting time is an inverse gamma distribution. The parameters of

this inverse gamma distribution change by callers’ contact history in particular by how long they

waited and whether they abandoned or received service in their previous contacts.

For identification purposes, we assume callers in the same priority group have the same prior be-

liefs. This is a standard assumption in the Bayesian learning literature in Marketing and Industrial

Organization (Eckstein et al. (1988), Erdem and Keane (1996) and Ackerberg (2003)). However,

to account for caller heterogeneity, we adopt the latent class model in Lazarsfeld et al. (1968) and

Heckman and Singer (1982). To be more specific, we assume within each priority group there are

two class of callers. Callers in the same class have the same reward and cost parameters. We not

only estimate the reward and cost parameters for each class within each priority group but also

estimate the probability of callers belonging to each class.

Using the observations in a bank call center with three priority classes (High, Medium and

Low), we estimate the parameters of the model using a Maximum Likelihood Estimation approach.

The parameters of the model are: callers’ waiting cost and their reward from receiving service, and

the parameters of callers’ prior belief about the waiting time distribution. We find that callers are

optimistic about their delays in the system and underestimate their delay duration. We also show

that the difference between callers from different priority classes in terms of their prior belief about
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the waiting time distribution is not as significant as their actual waiting times. To be more specific,

new callers irrespective of their priority group believe that they will receive service in less than 15

seconds even though their actual average waiting times ranges from 40 seconds to 90 seconds. This

agrees with the fact that in this call center callers are not aware of their priority class and in the

first contact could have the same belief.

We compare our model with the rational expectation model in the extant literature (Aksin

et al. (2013), Aksin et al. (2017) and Yu et al. (2017)) in four aspects. First, we show that our

model has a better fit to the data set in terms of statistical fit (AIC and BIC measures). Second,

we show that our model has a better prediction power compared with the rational expectation

model. To do so, we perform out of sample tests and show that the prediction error of our model

is less than third of that of the rational expectation model. This shows that our bayesian learning

model can be a better candidate for policy experiment and doing what-if analysis. Third, we show

that the rational expectation model may lead to poor inference about callers’ patience levels. To

be more specific, we use a non-parametric Kaplan-Meier (Kaplan and Meier (1958)) approach to

find the patience level ranking of different priority groups of callers. Then we compare the ranking

resulted from the estimation results of the rational expectation model and our bayesian learning

model. We show that in contrast to the rational expectation model the ranking resulted from our

bayesian learning model matches that of the non-parametric Kaplan-Meier model. And finally,

we show that our bayesian learning framework does not have the bias problem that the rational

expectation framework is prone to. In particular, we show that if callers’ belief about the waiting

time distribution does not match the actual distribution, the estimated parameters of callers under

the rational expectation equilibrium are biased, while our model and estimation procedure lead to

unbiased estimates.

Our Bayesian learning framework with the structural estimation approach has managerial impli-

cations at both tactical and operational levels: At the tactical level, callers’ belief about the waiting

time distribution shows callers’ expectation of their delay in the system, which can be considered

as a measure for callers’ overall evaluation of the service quality. Therefore, the call center manager

can get a sense of callers’ expectation about the service quality based on callers’ contact history

data, and can impact this expectation by providing delay information. For example, if callers are

pessimistic about their delays, the call center manager can provide delay information, which shifts

callers’ expectation toward their actual delays. Moreover, if callers’ are optimistic about their de-

lays, the call center manager may prefer to not provide any delay information to avoid increasing

callers’ abandonment rates.

At the operational level, the call center manager can use each caller’s contact history to find

her individual belief about the waiting time distribution. The knowledge of callers’ individual be-

lief together with the optimal stopping model could enable the call center manager to compute

each caller’s abandonment time distribution and expected patience threshold as a proxy for their

actual patience threshold, which is not observed in the data. Note that callers may have different

expected patience thresholds because of having different contact histories. Having a proxy for each
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individual caller’s patience threshold makes possible the implementation of personalized patience-

based policies such as Least-Patience-First policy (Mandelbaum and Momcilovic (2014)). In the

extant literature it has been assumed that the call center manager knows the patience threshold

of each caller. However, it is not explained how this knowledge is acquired. This paper provides a

framework for acquiring this knowledge.

Our paper has four main contributions: First, to the best of our knowledge this is the first work

that illustrates callers’ history-dependent behavior. We do this using a series of Cox regressions and

show that callers’ past interaction data provides information about their chance of abandonment

in their future contacts. Second, we separate the impact of callers’ patience parameters such as

their waiting costs from the impact of their contact history using a structural estimation approach

in a Bayesian learning setting. This separation enables us to calculate each callers’ evaluation of

the system delay after controlling for their parameters. In addition, we show that our model has

a better fit and also a better prediction power compared to the rational expectation model in the

extant literature. Third, the paper provides novel insights about callers’ expectation about their

delays. We show that callers are optimistic about the length of delay irrespective of their priority

classes. And finally, our framework provides practical tool to manage customer expectation about

the system delay, and to implement patience-based priority policies.

In the remainder of the paper, Section 2 presents the literature review. Section 3 describes our

data set and demonstrates the impact of callers’ contact history on their abandonment behavior.

Section 4 presents the model for callers’ abandonment behavior with Bayesian learning. Section

5 lays out the estimation framework and results. Section 6 compares our bayesian learning model

with the rational expectation model in different aspect including but not limited to the statistical

fit and the prediction power. Section 7 discusses some applications of the introduced framework.

Finally, Section 8 concludes the paper.

2 Literature Review

Incorporating the impact of customer abandonment is an integral part of designing call centers.

Customer abandonment has been studied extensively in the literature ranging from the traditional

way of assuming an exogenous and fixed distribution for callers’ patience thresholds (Gans et al.

(2003)) to utility-based approaches (Hassin and Haviv (1995), Mandelbaum and Shimkin (2000),

Shimkin and Mandelbaum (2004), Aksin et al. (2013), Aksin et al. (2017) and Yu et al. (2017)).

In Mandelbaum and Shimkin (2000) and Shimkin and Mandelbaum (2004), the authors use a

utility-based approach to model customers’ abandonment behavior. Customers abandon the call

center if their waiting time reaches their optimal abandonment time value. Aksin et al. (2013)

provide a framework to estimate customers’ parameters from call center data. The authors model

customers’ abandonment decisions as an optimal stopping model, where abandonment represents

stopping. Aksin et al. (2017) and Yu et al. (2017) uses a similar optimal stopping model for callers’

abandonment behavior under delay announcements. In all of these papers, the authors assume
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that all customers (or customers who hear the same announcement message if delay information is

provided) have the same belief about the waiting time distribution and this belief perfectly matches

the actual waiting time distribution in the data. We use a similar optimal stopping model for mod-

eling customers’ abandonment behavior. However, we consider a Bayesian learning model where

customers do not know the actual waiting time distribution but learn it over time based on their

waiting time experiences. We next describe the Bayesian learning literature relevant to this work.

Our bayesian learning model builds upon the empirical dynamic discrete choice literature in the

Marketing and Industrial organization fields (Eckstein et al. (1988), Erdem and Keane (1996) and

Ackerberg (2003)). The focus of this literature is on how consumer learning about brand attributes

affects purchasing behavior, using a dynamic programming approach. One of the most relevant

papers to our work is Erdem and Keane (1996), which provides a Bayesian learning framework to

study how brand choice probabilities depend on past usage experiences and advertising exposures.

The authors form a likelihood function for their model and estimate its parameters using observa-

tions from a scanner data. Similarly, Ackerberg (2003) uses a dynamic learning model of consumer

behavior on a frequently purchased packaged products to study the impact of past purchases and

advertising. We use a similar Bayesian learning framework in our model. However, to the best of

our knowledge this paper is the first empirical work on bayesian learning about service quality (in

our setting waiting duration) in the service operations context.

Other than the marketing literature, bayesian learning has been used in the Operations litera-

ture in the context of demand learning. Wecker (1978), Nahmias (1994) and Agrawal and Smith

(1996) study models to estimate demand parameter from sales data in the presence of stock outs,

which leads to censoring of demand data. Harpaz et al. (1982) and Ding et al. (2002) use parametric

bayesian models for learning demand from censored observations. Lariviere and Porteus (1999),

Mersereau (2015) and Heese and Swaminathan (2010) use the “newsvendor distribution” frame-

work of Braden and Freimer (1991) in their bayesian learning models. In this stream of literature,

the firm learns about demand from a censored data set. However, in our setting, callers learn about

the waiting time using their past, and possibly censored, waiting experience. Similar to most of

the works in this literature, we also use the “newsvendor distributions” to facilitate our analysis.

The framework introduced in this paper can be used in implementation of patience-based prior-

ity policies by providing information about each caller’s patience level. Bassamboo and Randhawa

(2014) use the amount of time callers have been waiting in the system as a proxy for their patience

level and provide a Time-In-Queue policy that significantly improves the performance measures of

the call center such as the queue length and the offered wait times. Mandelbaum and Momcilovic

(2014) compare the Least-Patience-First (LPF) policy with the First-Come-First-Served policy and

show that the LPF policy can lead to lower abandonment rates in the call center.

3 Illustrating the Impact of Past Waiting Experiences

We first describe our data set. Then, we use a series of Cox proportional hazard regressions to

illustrate the impact of callers’ past interactions on their abandonment behavior.
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3.1 Data Description

Our data set contains detailed call level data from a medium-sized bank call center with around

400 agents.3 The data set spans a 27 month period from April of 2007 through June of 2009. The

call center provides six types of services: Private, Securities, Internet, Other languages, Loans and

Solutions. We focus on callers who requested the Private service type as this portion of the data

contains more than 80% of the callers.

This call center serves four classes of customers: High-priority (VIP customers), Medium-

priority, Low-priority and No-priority. The priorities are assigned based on callers’ account in-

formation and sales data, which are not observed by us. However, we can observe callers’ assigned

priority classes in data. We use customer IDs to track customers and record their contact history.

We can observe the customer ID for the high, medium and low-priority callers. The no-priority

callers are unidentified customers, and their IDs are not observable. Therefore, we exclude the

no-priority callers from our analysis. Other than the customer IDs, we can observe the following

entries in the data: arrival time and day, waiting time in the queue, whether the caller abandoned

the system or waited until talking to an agent, service time and ID of the agent who served the call.

Figure 1 shows the histogram of the time between customers’ consecutive contacts. On average,

the time between two consecutive contacts is 27.88 days, and it does not exceed 240 days with 99%

probability. In our analysis, the order of customer contacts is an important factor. For example, we

need to know if a customer’s specific contact is the first contact or the caller has contacted before.

Therefore, we focus on callers whose first recorded contact in the data does not occur in 2007

(April to December of 2007). In other words, all callers included in our analysis contacted for the

first time between January of 2008 and June of 2009. Given that the time between contacts does

not exceed 240 days with 99% probability and that the total number of days from April through

December of 2007 is 270, the chance that the callers we included in our analyses contacted before

2008 is very low.
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Figure 1: The histogram of the time between customers’ consecutive contacts.

Figure 2 shows the histogram for the number of times customers contacted the call center. On

average during the 18 month period from January 2008 through June of 2009 , customers contact

the call center 5.65 times.

3Our data set was generously made available to us by the Service Enterprise Engineering (SEE) lab at the Technion
(http://ie.technion.ac.il/Labs/Serveng/).
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Figure 2: The histogram of the number of contacts.

Our data set exhibits a strong time of the day effect. Figure 3 shows the number of arrivals to

the call center depending on time of the day. Furthermore, Figures 4 shows the average of callers’

waiting times and abandonment rates during a day. As can be seen in Figure 3 the time between

9am and 4pm corresponds to the most congested time of the day (i.e. rush hours). In addition,

Figure 4 shows that even though the time between 9am and 4pm corresponds to the most congested

time of the day, because of the staffing policy in the call center and having a higher number of staff

in this time period, the average waiting times and abandonment rates are relatively lower than the

rest of the day.
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Figure 3: Number of arrivals during a day.
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Figure 4: Average waiting times and abandonment rates during a day.

To account for time of the day effect in our future analysis, we divide a day to two intervals

in our analyses: Rush-hours (9am to 4pm) and Non-rush-hours (before 9am and after 4pm). In

summary our data sets includes all contacts of callers from the high, medium and low priority
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groups whose first recorded contact in the data appears between January of 2008 and June of 2009,

and requested the retail service type. The summary statistics for the portion of the data we used

in our analysis is given in Table 1.

Priority class Number of callers Average number of
contacts

Abandonment
rate

Average waiting time
(sec.)

High 14,148 4.53 3.23 % 43.93

Medium 28,209 5.93 5.19 % 61.53

Low 45,674 5.80 8.44 % 84.57

Table 1: Summary statistics for the portion of the data used in the analysis.

In the next section, we use survival analyses such as the Kaplan-Meier estimation and Cox

proportional hazard regressions to illustrate the impact of callers’ past contact history on their

abandonment behavior in our data set.

3.2 Impact of Past Waiting Experiences

Denote by W−1 and O−1 the waiting times and outcomes of callers’ previous contact, where the

outcome variables is equal to 1 if the caller abandoned in the previous contact and is equal to 0

otherwise. We define customers’ abandonment behavior as the distribution of customers’ abandon-

ment time (patience time) and its hazard function, which captures the probability of abandonment

in each period if the caller has not received service or abandoned yet.4

We first use the Kaplan-Meier estimator (Kaplan and Meier (1958)) to find customers’ survival

function and show that it changes depending on call outcomes.5 Then, we use Cox proportional

hazard regressions (Cox (1972)) to see how customers’ abandonment hazard rate depends on their

waiting experience in their last contact. Figure 5 shows the survival functions for two groups of

customers: customers who abandoned in their previous contact (O−1 = 1) and customers who

waited until entering service in their previous contact (O−1 = 0).

Figure 5: The survival function of customers depending on the outcome of their previous contact.
The figure also shows the 95% confidence interval for the survival function estimate.

As can be seen in Figure 5, customers’ survival functions are different depending on the outcome

4As the data is censored in the sense that we do not observe the actual abandonment times (patience times) of
callers who receive service, we need to use survival analyses that take censoring into account.

5The survival function is 1-CDF of abandonment time distribution.
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of their first contact.6 Moreover, Figure 5 shows that customers who abandoned in their previous

contact have a lower probability of survival in their current contact, i.e. abandon with a higher

probability in the current contact.

To find the impact of callers’ contact history on their abandonment behavior we use the strat-

ified Cox regression (Hosmer et al. (2008)), where we define the high, medium and low-priority

classes as the strata. We use the stratified Cox regression instead of using a simple Cox regression

to accommodate the possibility that callers from different priority groups may have different base-

line hazard functions. See Appendix A for more details about the stratified Cox regression.

The explanatory variables in the Cox regressions are: waiting time in the previous contact

W−1, the outcome of the previous contact O−1, the interaction between outcome and wait duration

O−1×W−1, the indicator variables for time of the contact denoted by DRush−hour (equal to 1 if the

call occurred between 9am and 4pm), and the indicator variables for weekdays versus weekends.

Table 2 illustrates the results.

Table 2: The results for the stratified Cox regression, where the priority groups are the strata.

Variable Coefficient (Std. Err.)

O−1 0.7303∗∗ (0.0285)
W−1 -0.0015∗∗ (0.0001)
O−1 ×W−1 0.0007∗∗ (0.0001)
DRush−hour -0.0481∗∗ (0.0172)
Weekdays 0.0508 (0.0281)
Contact number 0.0054∗∗ (0.0006)

**Denotes statistically significant at 0.05.

As can be seen in Table 2, the coefficients for both O−1 and W−1 are significant. The coeffi-

cient for O−1 is positive and for W−1 is negative. This shows that callers who abandoned in the

previous contact abandon with a higher probability in their current contact. Moreover, callers who

waited for a longer time in the previous contact, which may indicate a higher patience level, have

a lower chance of abandonment in the current contact. However, given that the coefficient for the

interaction term O−1 × W−1 is negative, callers who waited for a longer time but abandoned in

their previous contact would abandon with a higher probability in their current contact compared

to customers who received service in their previous contact. Furthermore, the coefficient for the

contact number is positive and significant, which shows more frequent callers are less patient. In

other words, callers’ patience level goes down by their experience with the call center. In addition,

the coefficient for the indicator variable for Weekdays (“Weekdays”) is not significant but that of

the Rush-hour (“DRush−hour”) is significant, which shows time of the day effect is more significant

than day of the week effect in terms of callers’ abandonment behavior.7 To check the robustness of

6The Logrank test (Mantel (1966)) shows that the survival functions in Figure 5 are statistically different at a
0.05 significance level.

7We added an indicator variable for redial to the regression, which is equal to 1 if the second call is within 24
hours of the first call. Surprisingly, the coefficient for the redial indicator variable was not significant, suggesting that
whether a call is a redial or not does not significantly impact callers’ abandonment behavior. Moreover, we changed
the definition of redial by assuming that a call is a redial if the caller contacts within 4, 6, 12 and 48 hours of the
first contact and got the same insight.
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our findings, we have repeated the same Cox regression analysis on each priority group in isolation

and got the same insights. See Appendix B for the details of this analysis.

Discussion: Analyses in this section show that customers demonstrate history-dependent be-

havior. This history-dependent behavior is similar to customer inertia in the marketing literature

(Dubé et al. (2010)). That is, customers who purchased a product in the past (similar to abandon-

ing in our setting) have a higher probability of purchasing it in the future. However, as indicated

by Heckman (1979) and Dubé et al. (2010), it is not clear whether this behavior is driven by the

difference in customers’ waiting costs or the difference in their learning processes.

In particular, a higher chance of abandonment in the current contact can be driven by two

factors: 1) Customer learning: Customers who abandoned in the past believe that the waiting

times are long, so the higher chance of abandonment in the current contact is driven by change

in customers’ expectation about the waiting time distribution, and 2) Customers’ intrinsic high

waiting cost: Customers who abandoned in the past or were not willing to wait for longer times are

intrinsically less patient, therefore, they abandon with a higher probability in the current contact

as they did in the past. Separating the impact of callers’ preferences such as their waiting cost from

the impact of their waiting experiences helps the call center manager find callers’ evaluation of the

system delay independent of her patience parameters. Moreover, it helps in performing priority

policy counterfactual analyses since any change in the priority policy would impact callers’ waiting

experiences but would not affect their parameters. Consequently, these counterfactuals cannot be

done using the Cox regressions.

Moreover, the Cox regression analysis does not give us information about callers’ prior belief

about their delay duration. The Cox regression shows that callers get less patient as they acquire

more experience with the call center based on the positive coefficient for the contact number in

Table 2. However, the Cox regression does not shed light on callers’ prior belief about their delay

durations and whether their belief is optimistic or pessimistic compared to the actual delays in the

call center. To disentangle the effect of customer preferences from their learning process, and to

get a sense of callers’ prior belief about their delay duration, we use a structural model in the next

section.

4 Model for Customer Learning and Abandonment Behavior

In this section we first lay out a Bayesian framework for customer learning about the waiting time

distribution. Then, we model callers’ abandonment decision as an optimal stopping time problem.

Preliminaries. Suppose that callers are indexed by i ∈ {1, ..., N}. Denote by ni the number

of times caller i contacts the call center in the data set. To account for time of the day effect, we

divide a day to M intervals and let qin denote the index of the time interval for customer i’s nth

contact.8 We denote by Oint the outcome of caller i’s nth contact after waiting for t periods, which

is equal to 0 if the caller has entered service at time t, and is equal to 1 if the caller has abandoned

at time t or has not entered the service stage yet. Finally, we denote the waiting time of caller i in

8In our estimation, we divide the day to two intervals (M = 2): Rush-hours (9am-4pm), and Non-rush-hours.
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her nth contact by win and the final outcome of the nth contact by Oin. Note that Oin = Oinwin
.

4.1 A Bayesian Framework for Customer Learning

We assume that callers learn about the waiting time distribution in a Bayesian fashion. They have

a prior belief about a component of the waiting time distribution and update it while waiting in

the queue.

We consider a Weibull distribution for the actual waiting time distribution of the callers in

the data, which is a priori unknown to callers. We have chosen the Weibull distribution for the

following reasons: First, the Weibull distribution is perhaps the most widely used parametric

survival distribution (Ibrahim et al. (2005)) and has the ability to assume the characteristics of

different distribution types. Moreover, a Weibull distribution can show increasing, decreasing or

constant hazard rate based on the value of its shape parameter. Second, given that customers may

abandon in our data set, their observations of the waiting times are censored. Consequently, we

have chosen the Weibull distribution which is in the family of “newsvendor” distributions. The

class of “newsvendor” distributions has the conjugate prior property in the presence of censoring,

which makes the analysis of Bayesian updating tractable; see Braden and Freimer (1991) for more

details. This family of distributions have been used extensively to study bayesian learning under

censoring (see Mersereau (2015) and Lariviere and Porteus (1999)). A newsvendor distribution is

a continuous distribution with a cdf of the form 1 − exp(−ζh(x)) for x ≥ 0. where the function

h() is positive, differentiable and increasing for x. These conditions are satisfied for the Weibull

distribution as illustrated below.

The Weibull distribution for the actual waiting times of the day interval m ∈ {1, ...,M} with

the pdf (cdf) denoted by fm(t; km0 , γm0 ) (Fm(t; km0 , γm0 )) is given by

fm(t; km0 , γm0 ) =
km0
γm0

tk
m
0 −1e

− t
km0
γm0 and Fm(t; km0 , γm0 ) = 1− e

− t
km0
γm0 , (1)

where km0 is the shape parameter and γm0 is the scale parameter. Note that the Weibull distribution

is a newsvendor distribution with h(x) = xk
m
0 . The shape parameter of the waiting time distribution

km0 solely determines if its hazard rate is increasing, decreasing or constant. To be more specific,

km0 < 1, km0 = 1 and km0 > 1 correspond to decreasing, constant and increasing chance of receiving

service. We assume that customers know the shape parameters km0 , m ∈ {1, ...,M}. Hence, they

know if their chances of receiving service goes up/down or stays constant by time. However, we

assume that customers are uncertain about the scale parameter γm0 and learn about it based on

their waiting time experiences.9

We assume that callers who do not have any contact experience with the call center believe

9Later on in this section, we introduce the conjugate prior scheme and the bayesian updating. To the best of our
knowledge we have the conjugate prior property under censoring (abandonment in our case) if customers update only
the scale parameter of the distribution. In addition, the updating process is analytically intractable if we assume
callers update both the shape and scale parameter. Furthermore, it will lead to identification issues in the estimation
procedure. As due to the higher degrees of freedom the Maximum Likelihood Estimation problem will have multiple
solutions.
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that γm0 is distributed according to an inverse gamma distribution with the shape parameter µpr,m

and the scale parameters δpr,m. We denote this distribution by Inv−Gamma(µpr,m, δpr,m), which

is callers’ prior belief about the distribution of γ0.
10 We choose the inverse gamma distribution

because it can accommodate the conjugate prior scheme for the Weibull distribution. That is

callers’ posterior belief about the distribution of γm0 will be another inverse gamma distribution.

Next, we describe callers’ Bayesian updating process.

Callers update their belief about the distribution of γm0 only if they contact during day interval

m. Denote by (µpr,m
in , δpr,min ) the parameters of caller i’s prior belief about the distribution of γm0

right before her nth contact. Note that even though callers have the same prior belief before

having any contact experience with the call center, they may have different beliefs in their future

contacts because of having different waiting experiences. Moreover, we assume callers update their

belief while waiting and denote by (µpo,m
in (t), δpo,min (t)) the parameters of caller i’s posterior belief

about the distribution of γm0 at her nth contact after waiting for t periods. Upon arrival at t = 0

the caller has not acquired any new information about her waiting time. Consequently, we have

(µpo,m
in (0), δpoin,m(0)) = (µpr,m

in , δpr,min ). Figure 6 shows the diagram for the updating process.

Figure 6: The diagram of the updating process.

Proposition 1 characterizes callers’ Bayesian updating process; see Appendix C for its proof.

Proposition 1. Suppose that caller i’s belief about the distribution of γm0 prior to her nth contact

is an Inverse Gamma distribution with parameters (µpr,m
in , δpr,min ). Then, her posterior belief after

waiting for t periods in her nth contact has the following parameters:

µpo,m
in (t) = µpr,m

in + I{qin=m}(1−Oint), (2)

δpo,min (t) = δpr,min + I{qin=m}t
km0 , (3)

where I{·} is the indicator function. Moreover, caller i’s posterior predictive distribution by time t

in her nth contact for the waiting time distribution of day interval m denoted by F po,m
in (t) is given

by

F po,m
in (t) = 1−

( δpo,min (t)

δpo,min (t) + tk
m
0

)µ
po,m
in (t)

, (4)

and the caller’s belief about her chance of receiving service in the next period if she decides to wait

10The pdf of Inv −Gamma(a, b) is given by exp(−bt)ba/(Γ(a)t−(a+1)), where Γ(·) is the gamma function.
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denoted by πpo,m
in (t) has the following form

πpo,m
in (t) =

F po,m
in (t+ 1)− F po,m

in (t)

1− F po,m
in (t)

= 1−
( δpo,min (t) + tk

m
0

δpo,min (t) + (t+ 1)k
m
0

)µ
po,m
in (t)

. (5)

Finally, suppose that the caller has waited for win period in her nth contact, then assuming callers

do not forget what they learned in the past we have

µpr,m
in+1 = µpo,m

in (win), and δpr,min+1 = δpo,min (win). (6)

Proposition 1 shows that callers’ contact history information impacts their posterior beliefs

about the scale parameter of the waiting time distribution in two ways: the outcome of their

contacts (whether they received service or not) affects the shape parameter of their posterior belief

and the duration of their waitings impacts the scale parameter of their posterior belief. To be

more specific, the shape parameter of the inverse gamma distribution for callers’ posterior belief

(µpo,m
in (t)) changes only and only if callers receive services; i.e. Oint 6= 1. However, the scale

parameter (δpo,min (t)) increases after each contact even if the caller does not receive service.

Given the updating process characterized in Proposition 1, we can show that callers’ updating

process is consistent in the sense that callers will eventually learn the scale parameter of the

waiting time distribution γm0 even though because of abandonments callers’ observations could be

censored. To be more specific, callers’ posterior belief distribution about the scale parameter of

the waiting time distribution γm0 converges to a distribution with a variance equal to zero and a

mean equal to γm0 . Proposition 2 provides more details about the convergence of callers’ posterior

belief distribution. Without loss of generality we suppress the subscript for the day interval m in

Proposition 2; see Appendix C for its proof.

Proposition 2. Suppose that the waiting time distribution is Weibull with the shape and scale

parameters equal to k0 and γ0, respectively. Callers’ prior belief about the γ0 is an inverse gamma

distribution with parameters µpr and δpr. Callers know k0, and they update their belief about γ0

according to the process described in Proposition 1. Callers abandon if their actual waiting time,

which is a draw from the Weibull distribution of the waiting time, is greater than their patience

time. We assume callers’ patience time is a random draw from a distribution with pdf and cdf equal

to g(·) and G(·), and is independent of the waiting time random variable. If callers’ patience time

distribution has some mass at non-zero values (i.e. G(0) < 1) then callers’ posterior belief about

γ0 converges to a distribution with a variance equal to zero and a mean equal to γ0.

Callers make their abandonment decision based on their belief about their chances of receiving

service and their preferences. In the next section, we lay out an optimal stopping model for callers

abandonment decisions.
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4.2 An Optimal Stopping Model for Callers’ Abandonment Decisions

We use an optimal stopping model similar to the model introduced in Aksin et al. (2013) to charac-

terize callers’ abandonment decisions with one fundamental difference: In contrast to Aksin et al.

(2013), we do not assume that the actual waiting time distribution in the system is common knowl-

edge across all callers. But we assume callers learn about the actual waiting time distribution while

waiting, which in turn will impact their abandonment decisions.

We assume that callers are forward looking. They abandon the queue if their expected utility

of abandonment is higher than their expected utility of waiting. If they decide to wait, they choose

between waiting and abandonment again in the next time period based on the expected utilities.

Suppose that caller i’s nth contact happens during the day interval m. Caller i makes her abandon-

ment decisions based on three factors: her waiting cost per unit of time denoted by ci, her reward

from receiving service denoted by ri and her posterior belief about the waiting time distribution in

the day interval m by period t denoted by F po,m
in (t) and its hazard rate denoted by πpo,m

in (t). These

factors impact caller i’s decisions through her utility. Let Hin =
(

[wik, Oik, qik]k=1..n−1

)

denote the

vector of her past waiting times, final call outcomes and indexes of day intervals of contacts. In each

period of time the caller take the action d ∈ {0, 1} that maximizes her utility; d = 1 corresponds

to abandonment and d = 0 corresponds to waiting. Caller i’s utility in period t since her arrival at

her nth contact is given by

uin(t, d, ri, ci, µ
pr,m, δpr,m;Hin, ǫint(d)) = vin(t, d, ri, ci, µ

pr,m, δpr,m;Hin) + ǫint(d), (7)

where ǫint(d) is the error term corresponding to action d that captures the impact of external shocks

that may shift caller i’s utility toward an action. We assume that the error terms are independent

across actions, callers, contacts and time periods. The function vin(t, d, r, c, µ
pr,m, δpr,m;Hin) is

the nominal utility and is independent of the error term. We normalize the nominal utility of

abandonment to zero. That is

vin(t, 1, ri, ci, µ
pr,m, δpr,m;Hin) = 0. (8)

The nominal utility of waiting is given by

vin(t, 0, ri, ci, µ
pr,m, δpr,m;Hin) = −ci+πpo,m

in (t)ri+(1−πpo,m
in (t))Vin(t, ri, ci, µ

pr,m, δpr,m;Hin), (9)

where Vin(t, ri, ci, µ
pr,m, δpr,m;Hin) is the integrated value function, which is the expected maximum

utility in the next period, where expectation is taken over the error terms in the next period, and

has the following form

Vin(t, ri, ci, µ
pr,m, δpr,m;Hin) =

∫ ∫

max
d∈{0,1}

(

uin(t+ 1, d, ri, ci, µ
pr,m, δpr,m;Hin, ǫint+1(d))

)

(10)

dǫint+1(1)dǫint+1(0).
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The three terms on the right-hand side of (9) are as follows: the cost of waiting, caller i’s belief

about the expected utility of receiving service in period t and callers i’s belief about the expected

utility of not receiving service in period t but making optimal decisions in the upcoming periods.

We assume that the error terms ǫint have a type-I extreme value distribution with the scale

parameter σǫ and the location parameter −σǫγ, where γ is Euler’s constant. This ensures that the

mean of the extreme value distribution is zero. Then based on Aksin et al. (2013), the recursive

formula for the integrated value function is given by

Vin(t, ri, ci, µ
pr,m, δpr,m;Hin) = σǫ log

[

1 + exp
(vin(t+ 1, 0, ri, ci, µ

pr,m, δpr,m;Hin)

σǫ

)]

. (11)

Similar to Aksin et al. (2013), Aksin et al. (2017) and Yu et al. (2017) We assume that the terminal

value for the integrated value function is Vin(T, ri, ci, µ
pr,m, δpr,m;Hin) = 0, where T is the maximum

waiting time of callers. Following the distributional assumption for the error terms, the probability

of choosing action d ∈ {0, 1} in period t of caller i’s nth contact has the Logit form and is given by

Pint(d, ri, ci, µ
pr,m, δpr,m;Hin) =

exp(vin(t,d,ri,ci,µ
pr,m,δpr,m;Hin)
σǫ

)

1 + exp(vin(t,0,ri,ci,µ
pr,m,δpr,m;Hin)
σǫ

)
. (12)

4.3 Caller Heterogeneity and Structural Parameters of the Model

To account for caller heterogeneity, we adopt the latent class model in Lazarsfeld et al. (1968) and

Heckman and Singer (1982). To be more specific, we assume that for each priority class callers

reward and cost parameters (ri, ci) are equal to (r1, c1) with probability 0 ≤ η1 ≤ 1 and are equal

to (r2, c2) with probability η2 = 1 − η1. In other words, we segment the population of callers in

the same priority class to two groups and assume callers are in the first segment with probability

η1 and in the second segment with probability η2.

Furthermore, following Erdem and Keane (1996) and Erdem et al. (2008), for identification

purpose, we assume that callers in the same priority group have the same prior belief about the

distribution of the scale parameter of the waiting time distribution (callers from different priority

groups can have different priors). Note that even though callers from the same priority group have

the same prior belief, given their different contact history and waiting experiences, they will be

heterogeneous in their belief about the waiting time distribution in their future contacts. Hence,

the heterogeneity of beliefs arises endogenously across time/contacts through their contact history.

Moreover, as we will explain in section 5.2.1, for identification we normalize σǫ and fix it at 1.

Following these assumptions, the set of structural parameters of the model for callers (from the same

priority group) are Θ = {(km0 , γm0 ){m=1...M}, (r
l, cl, ηl){l=1,2}, (µ

pr,m, δpr,m){m=1...M}}. Note that

callers from different priority groups have different sets of structural parameters. If we know these

parameters and a caller’s past waiting experiences (Hin), we can use equation (12) to find the caller’s

chance of abandoning in each contact and each period. In the next section, we provide the estimation

strategy to recover the structural parameters of the model using the observations in our data set.
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5 Estimation Strategy

In this section we provide the estimation strategy to recover the structural parameters of the model

from the data set. We assume each priority group has its own Θ = {(km0 , γm0 ){m=1...M}, (r
l, cl, ηl){l=1,2}

, (µpr,m, δpr,m){m=1...M}} and we estimate it for each priority group separately.

In addition, to alleviate the complexity of solving the Maximum Likelihood Estimation problem,

we decrease the number of decision periods of callers by assuming that callers make their abandon-

ment decisions every 10 seconds. Since our data is more granular, we truncate the abandonment

times downward and the service initiation times upward.11 We provide the details of the estimation

procedure in the remainder of this section.

Denote by dint the action of caller i in period t of her nth contact. If the caller decides to wait

dint = 0 and if she decides to abandon dint = 1. To account for the time of the day effect, we divide

a day to Rush-hour (R) and Non-Rush-hour (NR) intervals (M = 2), where R corresponds to 9am

to 4pm and NR corresponds to the remainder of the day.

Our estimation procedure consists of two main steps below for each priority group:

• Step 1: Estimating the parameters of the actual waiting time distribution (km0 , γm0 ){m=1...M}

for each time interval.

• Step 2: Estimating the distribution of callers reward and cost parameters ((rl, cl, ηl){l=1,2})

and their prior beliefs about the waiting time distribution in each day interval (µpr,m, δpr,m

){m=1...M}.

5.1 Estimating the Shape Parameter of the Waiting Time Distribution

As mentioned in Section 4.1, we assume that the waiting time distribution for each day interval

is a Weibull distribution. To estimate the parameters of the waiting time distributions in the day

interval m, i.e. (km0 , γm0 ), we use a Maximum Likelihood Estimation method.

Suppose that caller i contacts during the day interval m in her nth contact (qin = m). Recall

that win is the waiting time of the caller in this contact. If the final outcome of this call is entering

the service stage, the likelihood that the caller’s waiting time is a draw from the actual waiting

time distribution for the day interval m is fm(win; k
m
0 , γm0 ).12 However, if the caller abandons in

this contact, the likelihood of observing win is 1 − Fm(win; k
m
0 , γm0 ) as we know that the actual

time of entering the service stage which is a draw from the actual waiting time distribution is larger

than win. Consequently, given (1) the log-likelihood function of observation in the day interval m

denoted by LL(km0 , γm0 ) has the following form:

LL(km0 , γm0 ) =
N
∑

i=1

ni
∑

n=1

I{qin=m}(1−Oin) log
(km0
γm0

win
km0 −1e

−
win

km0

γ0

)

+ I{qin=m}Oin log
(

e
−

win
km0

γm0

)

.

11Assuming that callers make decision every 15 or 20 seconds changes the estimation results but does not affect
the key results and the insights of the paper.

12Recall that fm(·; km
0 , γm

0 ) and Fm(·; km
0 , γm

0 ) denote the p.d.f. and c.d.f. of the waiting time distribution for the
day interval m.
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To estimate km0 and γm0 we maximize LL(km0 , γm0 ) subject to km0 ≥ 0 and γm0 ≥ 0. Table 3 shows

the estimation results for different priority groups and day intervals.

Priority group Shape parameter (k0) Scale parameter (γ0)

High-priority (NR)
0.726 4.371
(0.009) (0.109)

High-priority (R)
0.741 3.698
(0.007) (0.071)

Medium-priority (NR)
0.715 6.626
(0.006) (0.101)

Medium-priority (R)
0.742 5.111
(0.004) (0.0567)

Low-priority (NR)
0.704 9.717
(0.005) (0.128)

Low-priority (R)
0.754 7.313
(0.004) (0.069)

Table 3: The estimates for the shape and scale parameter of the Weibull distribution of the waiting
times. The numbers in parenthesis show the standard errors of the estimates.

5.2 Estimating Callers’ Reward and Cost Parameters, and Their Prior Beliefs

In this section, we lay out the procedure to estimate the distribution of callers’ reward and cost

parameter, and the parameters of their prior beliefs. We perform this estimation procedure on

each priority group in isolation. We first discuss identification, and then explain the estimation

procedure.

5.2.1 Identification

Using Equations (8) to (9) and Equatione (11) to (12), we can show that caller i’s abandonment

probability in period t of her nth contact can be written as follows:

Pint(1, ri, ci, µ
pr,m, δpr,m;Hin) = Ω

({

−
ci
σǫ

+
ri
σǫ

πpo,m
in (s)

}

s≥t

)

, (13)

where Ω(·) is a suitably defined function, and −ci/σǫ + (ri/σǫ)π
po,m
in (s); s ≥ t is the per period

utility of waiting in period s. As can be seen in (13), multiplying ri, ci and σǫ by a constant would

not change the choice probabilities. Consequently, we need to normalize one of these parameters.

Following the standard practice in the Industrial Organization literature (Nevo (2000)), we fix

σǫ = 1 from now on. In addition, given Equation (12) for d = 1 we can write

Pint+1(1, ri, ci, µ
pr,m, δpr,m;Hin) =

1

1 + exp(vin(t+1,0,ri,ci,µpr,m,δpr,m;Hin)
σǫ

)
. (14)

Given Equations (14) and (11) we have

Vin(t, ri, ci, µ
pr,m, δpr,m;Hin) = σǫ log(1/Pint+1(1, ri, ci, µ

pr,m, δpr,m;Hin)), (15)

= − log(Pint+1(1, ri, ci, µ
pr,m, δpr,m;Hin).

Using Equation (9) and (12), we have

18



log(1/Pint(1, ri, ci, µ
pr,m, δpr,m;Hin)− 1) (16)

=vin(t, 0, ri, ci, µ
pr,m, δpr,m;Hin),

=− ci + πpo,m
in (t)ri − (1− πpo,m

in (t)) log(Pint+1(1, ri, ci, µ
pr,m, δpr,m;Hin).

After rearranging Equation (16), and suppressing the arguments of the choice probabilities for

simplification we can write

log(1/Pint) + (1− πpo,m
in (t)) log(Pint+1) = −ci + πpo,m

in (t)ri. (17)

Now, Consider a subset of callers with sufficient prior experience with the call center (a high number

of contacts). Such callers do not have uncertainty about the waiting time distribution and their

belief converges to the actual distribution in the data (following Proposition 2). Consequently using

(17) for experienced callers in their late contacts, we can write: log(1/Pint)+(1−π(t)) log(Pint+1) =

−ci+π(t)ri, where π(t) is the hazard rate of the actual waiting time distribution. The hazard rate

of the actual waiting time distribution π(t) and the abandonment probabilities for experienced

callers in their late contacts are identified from the data set. Consequently, given that all variables

on the left hand side of this equation are observed (and identified), the variation in the left hand

side would identify the reward and cost parameter (ri,ci) and their distribution. We briefly explain

the intuition behind this. If we assume yt = log(1/Pint) + (1 − π(t)) log(Pint+1) and xt = π(t),

regressing yt on xt would give us the intercept (ci) and the slope (ri) and the distribution for

them. This shows that, the distribution of the reward and cost parameters can be identified by

change in abandonment behavior of experienced callers in their late contacts across different periods.

Given the identification of the distribution of ri and ci and that we can observe callers’ history

Hin, the parameters of the prior belief distribution (µpr,m, δpr,m) are identified through the change

in callers’ abandonment behavior across their different contacts. Note that callers’ abandonment

probabilities depend on πpo,m
in (s), which is a function of (µpr,m, δpr,m), the reward and cost parameter

(ri, ci) and the history Hin. Hence, beyond the reward and cost parameters and caller history

callers abandonment behavior across their different contacts is driven by the parameters of the

prior belief (µpr,m, δpr,m). Given the identification of the reward and cost parameters and that we

observe callers’ history, we can identify the prior belief using the variation in callers’ abandonment

probabilities across their contacts.

5.2.2 Maximum Likelihood Estimation Problem

After estimating the shape parameter of the waiting time distribution k0 in Section 5.1, we are ready

to estimate the rest of the parameters denoted by Θ0 = {(rl, cl, ηl){l=1,2}, (µ
pr,m, δpr,m){m=1...M}}.

The likelihood of callers i’s action in the data is given by

Li(Θ0) =
2

∑

l=1

ηl
ni
∏

n=1

I{qin=m}

win
∏

t=0

(

Pint(1, r
l, cl, µpr,m, δpr,m;Hin)

)Idin,t=1

(18)

×
(

1− Pint(1, r
l, cl, µpr,m, δpr,m;Hin)

)Idin,t=0

.
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Note that given that we do not observe ri and ci we calculate the product of caller i’s choice

probabilities across her different contacts for (r1, c1) and (r2, c2) and then find the linear com-

bincation based on η1 and η2. The log-likelihood of the entire population denoted by logL(Θ0)

is given by logL(Θ0) =
∑N

i=1 log(Li(Θ0)). The Maximum Likelihood Estimation problem to find

Θ0 = {(rl, cl, ηl){l=1,2}, (µ
pr,m, δpr,m){m=1...M}} is as follows:

maximize
Θ0

logL(Θ0)

subject to for all i = 1, ..., N, n = 1, ..., ni, t = 0, ..., win, l = 1, 2 :

Pint(dint, rl, cl, µ
pr,m, δpr,m;Hin) =

exp( vin(t,int,rl,cl,µ
pr,m,δpr,m;Hin)
σǫ

)

1 + exp( vin(t,0,rl,cl,µpr,m,δpr,m;Hin)
σǫ

)
,

Vin(t, rl, cl, µ
pr,m, δpr,m;Hin) = σǫ log

[

1 + exp
(vin(t+ 1, 0, rl, cl, µ

pr,m, δpr,m;Hin)

σǫ

)]

,

πpo,m
in (t) = 1−

(

δ
po,m

in
(t)+tk

m
0

δ
po,m

in
(t)+(t+1)k

m
0

)µ
po,m

in
(t)

, η1 + η2 = 1,

µpo,m
in (t) = µpr,m

in + I{qin=m}(1−Oint), δpo,min (t) = δpr,min + I{qin=m}t
km
0

µpr,m
i1 = µpr,m, δpr,mi1 = δpr,m, µpr,m

in+1 = µpo,m
in (win), δpr,min+1 = δpo,min (win).

(19)

Solving this Maximum Likelihood Estimation problem is more challenging and time consuming

than the estimation problem under the rational expectation equilibrium assumption as done in

Aksin et al. (2013) and Yu et al. (2017). In Aksin et al. (2013) and Yu et al. (2017), the authors

consider a rational expectation setting where all callers have the same belief about their chances

of receiving service. That is the belief about the chance of entering service (πpo,m
in (t)) is the same

as the actual hazard rate of the waiting time distribution for all callers in all of their contacts.

Consequently, for each set of structural parameters only one calculation of the integrated value

function using the recursive formula in (11) is needed. However, in our setting, given that πpo,m
in (t)

changes across callers, contacts and period, the recursive formula for the integrated value function

in (11) should be calculated for 1 +
∑N

i=1(ni − 1) times, where 1 indicates one calculation for

the first contact for all callers and (ni − 1) indicates the number of calculations for each caller

for contact two to contact ni.
13 To solve the Maximum Likelihood Estimation problem we use the

non-linear optimization solver KNITRO (Byrd et al. (2006)) with AMPL interface. the integrations

are calculated numerically using the Gauss-Hermite quadrature with 5 nodes (Judd (1998)). We

solve the maximum likelihood estimation problem for 300 randomly generated starting points to

make sure that we are finding the true solution of the maximization problem.14

13Note that following our assumption that all callers have the same prior belief, the calculation of the integrated
value function at the first contact for all callers is the same.

14To tackle the computational complexity of the estimation problem we attempted using the Conditional Choice
Probability approach (Hotz and Miller (1993), Arcidiacono and Miller (2011)). The intuition behind this approach
is using Equation (15) to approximate the integrated value function from data instead of calculating it for each set
of structural parameters. However, this approach showed serious identification problems because of a large set of
state variables in our case resulted from different customer histories. Our Monte-Carlo studies shows that the CCP
approach cannot recover the true parameters of callers. However, our “Brute Force” approach of calculating the
integrated value functions can identify all parameters.
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5.3 Estimation Results for the prior belief, reward and cost parameters

Using the MLE in Section 5.2.2, we estimate Θ0 = {(rl, cl, ηl){l=1,2}, (µ
pr,m, δpr,m){m=1...M}} for

each priority group. Tables 4 and 5 shows the estimation results. The numbers in parenthesis in

Tables 4 and 5 show the standard errors of the estimates. To calculate the standard errors we use

the nonparametric bootstrap method by taking samples by replacements from the pool of callers

(not the pool of observations). If a caller is chosen to be in a sample, all contacts of the caller will

be included.

Priority group η1 c1 r1 η2 c2 r2 Mean-c Mean-r

High-priority
0.92 0.95 7.56 0.08 0.18 4.14

0.89 7.29
(0.07) (0.12) (0.73) (0.07) (0.06) (0.52)

Medium-priority
0.81 0.96 7.45 0.19 1.11 6.02

0.99 7.18
(0.05) (0.08) (0.56) (0.05) (0.14) (0.88)

Low-priority
0.85 1.01 6.74 0.16 1.21 5.68

1.04 6.88
(0.08) (0.15) (0.72) (0.08) (0.23) (0.95)

Table 4: The estimates for callers’ reward and cost parameter. Note that Mean-c=η1c1 + η2c2,and
Mean-r=η1r1 + η2r2.

Priority group µpr,NR δpr,NR µpr,R δpr,R

High-priority
1497.84 880.65 1220.58 774.64
(310.23) (201.36) (110.78) (214.58)

Medium-priority
5120.23 3024.81 1730.61 1092.98
(540.36) (542.64) (254.68) (198.849)

Low-priority
3028.80 1598.45 1484.12 928.02
(132.56) (242.99) (150.77) (235.01)

Table 5: The estimates for callers’ prior belief parameters.

The log-likelihood value for the MLE problems of the high, medium and low priority groups are

-6,800.89, -30,238.63 and -65,644.61, respectively. The estimation results in Tables 4 and 5 lead to

the three insights as follows:

First insight: Callers are optimistic about their chances of receiving service irrespec-

tive of their priority group. Using the estimates in Table 5 we calculate callers’ prior predictive

distributions and their averages for the Rush-hour and Non-Rush-hour day intervals. We calculated

these averages using the cdf of the actual and the prior predictive distributions. The cdf of the prior

predictive distributions are computed using the estimates in Table 5 and Equation (4). We found

the cdf of callers’ actual waiting time distributions using the Kaplan-Meier estimator (Kaplan and

Meier (1958)) from observation in our data set. Table 6 shows the comparison of the actual average

waiting times and callers beliefs about it for all priority groups. As can be seen in Table 6 callers

who do not have any experience with the call center irrespective of their priority class believe that

their average waiting times will be less than 15 seconds. However, the actual average delays are

21



much longer. This agrees with the fact that in this call center callers are not aware of their priority

class and in the first contact could have the same belief.

Priority group Prior belief (sec.) Actual value (sec.)

High-priority (NR) 12.83 48.81

High-priority (R) 12.54 40.94

Medium-priority (NR) 12.90 72.37

Medium-priority (R) 13.26 55.36

Low-priority (NR) 12.24 99.85

Low-priority (R) 13.14 75.32

Table 6: Comparison of callers’ actual average waiting time versus their prior belief about it
calculated using callers’ prior predictive distribution.

Figures 7 to 9 show the comparison between the actual waiting time distribution and callers’

prior predictive distributions for the high to low priority groups for the Rush-hour and Non-Rush-

hour day intervals. As can be seen in these figures, callers’ prior predictive is optimistic and callers

believe they will receive service much earlier than what actually happened. We performed the one

sided Kolmogorov-Smirnov test to compare the actual and prior predictive distributions, and for

all cases, we could reject the null hypothesis that the actual and predictive distributions are the

same with 99% confidence level.
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Figure 7: The comparison of the cdf of the actual distribution for callers’ waiting times and their
prior predictive for the waiting time for the high priority callers.
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Figure 8: The comparison of the cdf of the actual distribution for callers’ waiting times and their
prior predictive for the waiting time for the medium priority callers.
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Figure 9: The comparison of the cdf of the actual distribution for callers’ waiting times and their
prior predictive for the waiting time for the low priority callers.

Second insight: Low priority callers are the least patient ones, and the High priority

callers are the most patient ones. Based on the mean of the reward and cost parameters in

Table 4, high priority callers have the highest value for service and the Low priority callers have the

lowest value for service. Moreover, high priority callers have the lowest waiting cost and low priority

callers have the highest waiting cost. The average of the ratios of the reward and cost parameter

across the two caller segments for the high, medium and low priority callers (η1r1/c1+η2r2/c2) are

7.37, 6.48 and 6.07 , respectively. The ratio of the cost and reward parameters can be considered as

a proxy for callers’ patience threshold. Consequently, the estimation results show that the ranking

of the priority groups from the most patient to the least patient is High, Medium and Low.

To see if the ranking of the priority groups inferred from their reward and cost estimates agrees

with what data tells us using a non parametric approach (and model free approach), we estimated

the survival probabilities of the priority groups using the Kaplan-Meier estimator. Figure 10 shows

the survival curves for the high, medium and low priority groups.
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Figure 10: The survival curves for the high, medium and low priority groups estimated using the
Kaplan-Meier approach.

As can be see in Figure 10, the high priority callers have the highest survival probabilities (low-

est abandonment probabilities) and the low priority callers have the lowest survival probabilities.

In other words, the ranking of priority groups in terms of callers’ patience level inferred from our

Bayesian estimates in Table 4 matches the ranking inferred from the non-parametric Kaplan-Meier

estimator shown in Figure 10.
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Third insight: The difference between callers’ prior beliefs across different priority

groups is not as significant as the actual difference in their waiting time distributions.

As can be seen in Table 6 even though the difference between the actual waiting times across dif-

ferent priority groups is significant, the difference between callers’ prior predictive beliefs about the

average waiting times is small. In other words, callers from different priority groups who are first

time callers are not significantly different in terms of their belief about the waiting time distribu-

tion. We can see this phenomenon more clearly in Figure 11, which shows the comparison of the

actual and prior predictive distributions across different priority groups.
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Figure 11: The comparison of the actual and prior predictive distributions across different priority
groups.

6 Comparison Between the Bayesian Learning Model and the Ra-

tional Expectation Model

In this section we compare the bayesian learning model introduced in this paper with the rational

expectation model in Aksin et al. (2013), Aksin et al. (2017) and Yu et al. (2017), which is the state

of the art in the literature. We first explain how the parameters of the model under the rational

expectation assumption are estimated. Then we estimate the parameters of the rational expec-

tation model. And finally, we compare the bayesian learning model and the rational expectation

model in four aspects: fit to the data set, inference about patience levels, the prediction power and

estimation bias.

Estimating the parameters under the rational expectation assumption. In the rational

expectation model (Aksin et al. (2013), Aksin et al. (2017) and Yu et al. (2017)) the main as-

sumption is that call callers irrespective of their contact history know the actual distribution in

the call center. Consequently, the model for callers’ abandonment behavior would be similar to the

model presented in Section 4.2 with one difference: callers’ belief about their chances of receiving

service πpo,m
in matches the actual hazard rate of the waiting time distribution for all callers across
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all contacts. Consequently, we do not estimate a prior belief, and the structural parameters of the

model will be only the parameters of the cost and reward denoted by ΘRE
0 = {(ηl, rl, cl){l=1,2}}.

The details of the estimation procedure for the rational expectation model is explained in Appendix

D. Table 7 shows the estimation results under the rational expectation assumption.

Priority group η1 c1 r1 η2 c2 r2 Mean-c Mean-r

High-priority
0.98 0.07 6.06 0.02 0.00 1.91

0.07 5.97
(0.09) (0.02) (0.73) (0.09) (0.02) (0.23)

Medium-priority
0.88 0.08 6.35 0.12 0.17 5.81

0.09 6.28
(0.07) (0.03) (0.87) (0.07) (0.06) (0.79)

Low-priority
0.83 0.01 5.17 0.17 0.05 4.17

0.02 5.00
(0.06) (0.01) (0.48) (0.06) (0.01) (0.66)

Table 7: The estimates for callers’ reward and cost parameter.

The log-likelihood values for the MLE problems of the high, medium and low priority groups are

-6,852.79, -30,682.90 and -66,550.72, respectively.

Comparison of the fit of the bayesian learning and the rational expectation models.

Table 8 shows the comparison between the AIC and BIC values for the bayesian learning and ratio-

nal expectation models. As can be seen in Table 8 for all priority groups the AIC and BIC values

Priority group
Bayesian L. Rational Exp. Bayesian L. Rational Exp.

(AIC) (AIC) (BIC) (BIC)

High-priority 13,613.79 13,717.60 13,664.66 13,726.55

Medium-priority 60,489.27 61,377.80 60,546.51 61,388.89

Low-priority 131,301.22 133,113.43 131,360.35 133,125.14

Table 8: The AIC and BIC values for the maximum likelihood estimation problems of the bayesian
learning and rational expectation models.

for the bayesian learning model are less than those of the rational expectation model. This shows

that the bayesian learning model has a better fit to the data set.

Comparison of the inference about callers’ patience levels. Based on the estimation results

of the rational expectation model in Table 7 the averages of the ratio of the reward and cost parame-

ter across the two caller segments for the high, medium and low priority callers (η1r1/c1+η2r2/c2)

are 87.71, 67.12 and 403.72, respectively. In other words, the ranking of the priority groups in

terms of their patience level using the rational expectation approach from the highest patience to

the lowest patience is low, high and medium. This ranking does not agree with what the non-

parametric Kaplan-Meier estimator tells us in Figure 10. Recall from the second insight in Section

5.3 that the bayesian learning model tells us that the ranking from the highest patience to the

lowest patience is high, medium and low priority groups, which matches with the results of the

Kaplan-Meier estimator. This shows that the rational expectation assumption may lead to poor

inferences in terms of callers’ patience levels.

Comparison of the prediction power. To compare the prediction power of the bayesian learn-
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ing model with the rational expectation model, we perform out of sample test. To do so we divide

the data sets across callers to two sets randomly: a training set and a test set. We use the observa-

tions in the training set to estimate the parameters of the model, which include ((ηl, rl, cl){l=1,2},

µpr,NR,µpr,R,δpr,NR,δpr,R) for the bayesian learning model and (ηl, rl, cl){l=1,2} for the rational ex-

pectation model. Then, we use the estimated parameters and the corresponding model to predict

callers’ abandonment behavior in the test set. In the bayesian learning model, we use the prior

distribution in the training set to find callers’ belief in each contact in the test set. However, in the

rational expectation model, consistent with the assumption that callers know the actual waiting

time distribution, we estimate the waiting time distribution for the rush-hour and non-rush-hours

in the test set and assume these distributions are common knowledge across all callers. Table 9

shows the absolute and relative errors in predicting the abandonment rates for the bayesian learning

model and the rational expectation model, respectively.

Priority group
Relative Error Absolute Error Relative Error Absolute Error
(Bayesian L.) (Bayesian L.) (Rational Exp.) (Rational Exp.)

High-priority 8.19 % 0.24 % 17.38 % 0.51 %

Medium-priority 4.30 % 0.22 % 28.86 % 1.45 %

Low-priority 4.29 % 0.36 % 13.04 % 1.10 %

Average across all tests 5.59 % 0.27 % 19.70 % 1.02 %

Table 9: The relative and absolute errors in predicting the abandonment rates for the bayesian
learning model and the rational expectation model.

As can be seen in Table 9, the average of the errors for the bayesian learning model is less than third

of that of the rational expectation model. We repeated this analysis for other randomly selected

training and test sets and got the same results.

Comparison of the estimation bias. In this section using a Monte-Carlo simulation study, we

show that if callers’ belief about the waiting time distribution does not match the actual distribu-

tion, estimating the parameters of the optimal stopping time model under the rational expectation

assumption would lead to biased estimates. While our bayesian learning framework can recover the

true parameters without any bias. To do so, we create 100 simulated data sets in which callers’

belief about the waiting time distribution is optimistic and does not match the actual waiting time

distribution in the data. Then we estimate back the true parameters of callers using both the

rational expectation model and the bayesian learning model and compare the results.

We created 100 simulated data sets with 20,000 callers in each data set. There are two day

intervals and callers have the same probability of contacting in these intervals. The distribution

of callers’ frequency of contact is estimated empirically from the data set. We assume that the

actual waiting time distribution of the first and the second day intervals are Weibull(1.5, 40) and

Weibull(2, 40), respectively. Callers updating scheme and abandonment behavior are the same as

those explained in Section 4. Callers are evenly split to type 1 and type 2; i.e. η1 = η2 = 0.5. The

reward and cost parameters of type 1 and type 2 callers are (r1 = 8, c1 = 0.3) and (r1 = 6, c1 = 0.5),

respectively. Furthermore, their prior belief about the scale parameters of the waiting time distri-
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butions in the day interval one and two are Inverse−gamma(5, 20) and Inverse−gamma(10, 40),

respectively. Note that the average of callers’ prior expectation about the scale parameter of the

waiting time distributions in day interval and two are 5 and 4.44, which are much smaller than

the actual values (40). Consequently, callers are optimistic about the waiting time durations. Ta-

ble 10 shows the true and estimated value for the reward and cost parameters under the rational

expectation assumption.

Priority group η1 c1 r1 η2 c2 r2

True parameters 0.50 0.30 8.00 0.50 0.50 6.00

Mean (Simulated data) 0.69 0.10 6.68 0.31 0.20 6.53

standard deviation (Simulated data) 0.06 0.02 0.40 0.06 0.01 0.20

Upper bound (95% CI) (Simulated data) 0.80 0.15 7.47 0.42 0.22 6.94

Lower bound (95% CI) (Simulated data) 0.58 0.06 5.89 0.20 0.17 6.13

Table 10: The results of the Monte-Carlo study for the rational expectation model.

As can be seen in Table 10 the mean of the estimates are not close to the actual values and the

actual values are not in the confidence intervals of the estimates either. This shows that estimating

the parameters using the rational expectation framework may lead to biased estimates in settings

that callers’ belief does not match the actual distribution in the data, which might be the case in

most of the real world situations.

We estimated the parameters of the 100 simulated data sets using our bayesian learning frame-

work as well. Table 11 shows the results of the Monte-Carlo simulation study for the bayesian

learning model.

Priority group η1 c1 r1 η2 c2 r2 µpr,1 δpr,1 µpr,2 δpr,2

True parameters 0.50 0.30 8.00 0.50 0.50 6.00 5.00 20.00 10.00 40.00

Mean (Simulated data) 0.47 0.29 8.21 0.51 0.46 5.92 4.86 20.96 11.24 41.23

standard deviation (Simulated data) 0.04 0.03 0.54 0.04 0.09 0.41 0.69 3.24 1.33 6.63

Upper bound (95% CI) (Simulated data) 0.55 0.35 9.27 0.59 0.64 6.72 6.21 27.31 13.85 54.22

Lower bound (95% CI) (Simulated data) 0.39 0.23 7.15 0.43 0.28 5.12 3.51 14.61 8.63 28.24

Table 11: The results of the Monte-Carlo study for the bayesian learning model.

As can be seen in Table 11, the mean of the estimated parameters of the simulated data sets

are close to the true values and all true values are in the confidence intervals constructed from the

estimates of the simulated data sets. In other words, the bayesian learning framework is capable

of recovering the true parameters of the simulated dataset without any bias.

The analyses in this section show that the bayesian learning model not only has a better

statistical fit compared to the rational expectation model but also it has a better prediction power,

which is extremely important in performing what-if analyses and policy experiments. Moreover, in

27



contrast to the rational expectation framework the bayesian learning framework does not lead to

biased estimates or poor predictions about caller patience levels.

7 Managerial Applications

The introduced Bayesian learning model and the estimation framework provides a deeper under-

standing of callers’ expectation about their delays and the impact of their past interactions on

their abandonment behavior. It also provides several opportunities for the call center managers to

improve the performance measures of the call center and the firm-customer relationship. In what

follows we discuss two applications of the framework introduced in this paper:

Managing customers’ expectation about their delays: An important measure of the

service quality in call centers is callers’ delays. Therefore, the call center manager can get a better

understanding of callers’ expectations about the service quality by acquiring more information on

customers’ beliefs about their delays in the system.

Our framework can be used to estimate callers’ prior beliefs about their delays. The estimation

results show that in this specific call center callers are generally optimistic about their chances of

receiving service.15 In other words, callers overestimate the service quality in the call center. In this

setting, providing delay information may actually increase callers’ abandonments because it moves

callers’ prior belief toward the actual distribution which entails longer delays. Consequently, the

manager may decide to not provide any delay information in this call center. However, in a setting

that callers are pessimistic about their chances of receiving service providing delay information via

delay announcements shifts callers’ expectation and aligns it with the actual delay distribution in

the call center. Given that callers’ prior expectation is pessimistic, providing delay announcements

lowers callers’ abandonment probabilities. In addition, such information can be provided in a cus-

tomized fashion for each caller.

To show the significance of impact of callers’ prior belief on their abandonment behavior, we

find the impact of changing the location parameters in callers’ prior belief distribution (δNR,pr and

δR,pr) about the scale parameter of the waiting time distribution on their abandonment rates in

the data. Note that given that the mean of the Inverse-gamma distribution is proportional to its

location parameter, changing δNR,pr and δR,pr would proportionally impact callers belief about the

mean of the location parameter of the actual waiting time distribution, which in turn would impact

callers’ belief about their waiting duration.

We change the location parameters in callers’ prior belief by assuming δNR,pr
new = β× δNR,pr and

δR,pr
new = β × δR,pr for β = 0.9, 1 and 1.1, and use our model to predict callers’ abandonment prob-

abilities and the total abandonment rate in the data. Table 12 shows the predicted abandonment

rates in the data for different values of β.

As can be seen in Table 12 inflating or deflating β would increase and decrease the abandonment

probabilities of callers, respectively. Note that increasing (decreasing) β would lead to a higher

15We cannot generalize this finding to all call centers, and consequently, cannot roll out the possibility of customers
being pessimistic about the duration of their delays.
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β = 1 β = 0.9 β = 1.1
Predicted
abandonment (Relative change (Relative change
rates compared to β = 1) compared to β = 1)

High-priority 3.15%
2.95% 3.36%

(-6.02%) (6.73%)

Medium-priority 5.10%
4.71% 5.58%

(-7.56%) (9.21%)

Low-priority 8.26%
7.41% 8.89%

(-10.31%) (7.55%)

Table 12: The predicted abandonment rates for different values of β. The values in parenthesis
show the change in the abandonment rates relative to the case with β = 1.

(lower) mean for the scale parameter of callers’ belief about the waiting time distribution, which

results in callers expecting to have a longer (shorter) duration of waiting. Furthermore, if callers

believe the waiting duration will be longer (shorter) they abandon with a higher (lower) probability.

Increasing β by 10% from 1 to 1.1 would increase the abandonment rates of the high, medium and

low priority groups by 6.73%, 9.21% and 7.55%, respectively. Decreasing β by 10% from 1 to 0.9

would decrease the abandonment rates of the high, medium and low priority groups by 6.02%,

7.75% and 10.31%, respectively. Hence, callers’ prior belief would impact their abandonment rates

in the call center, and influencing this belief would change the performance measures in the call

center.

Changing the scheduling policy based on callers’ patience level: A growing body of

literature in Operations Management has shown that modifying the scheduling policy of the call

center based on callers’ abandonment probabilities or their remaining patience threshold leads to

a significant improvement in call center performance measures.

Mandelbaum and Momcilovic (2014) investigate the impact of the Least-Patience-First (LPF)

policy on system performance and show that the LPF policy can provide significant improvements

over the First-Come-First-Served (FCFS) policy by decreasing the abandonment rate. The authors

assume that the call center manager knows the patience thresholds of all callers. Bassamboo and

Randhawa (2014) propose a Time-In-Queue policy that prioritizes customers based on the amount

of time they have been waiting in the system. The authors assume that customers’ patience

thresholds are drawn from the same distribution, and how long they have been waiting reveals

some information about their individual patience threshold. The authors show that the new policy

can significantly improve the performance measures in the system such as the average waiting

time and the queue length. The framework in the current work complements the aforementioned

literature as follows:

Unlike Mandelbaum and Momcilovic (2014) and Bassamboo and Randhawa (2014), we do not

assume that callers’ individual patience threshold (or its distribution) are perfectly known and

are exogenously given. But we provide a framework that utilizes callers’ contact history data

to calculate two types of caller-specific information about their patience. These two types of
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information may differ across callers depending on their contact history. The first type of caller-

specific information acquired using our framework is the expected abandonment probability of the

callers in period t of their nth contact E[Pint(d, ri, ci, µ
pr,m, δpr,m;Hin)] that can be calculated using

the estimated distribution for callers reward and cost parameter. Consequently, for each caller,

given her contact history, we can find her expected abandonment probability in each period of

waiting. To be more specific, we have

E[Pint(d, ri, ci, µ
pr,m, δpr,m;Hin)] =

2
∑

l=1

ηlPint(d, r
l, cl, µpr,m, δpr,m;Hin). (20)

The second type of caller-specific information calculated using our framework is callers’ expected

patience threshold (abandonment time). Denote by E[Gin(t, r, c, µ
pr,m, δpr,m;Hin)] the expected

abandonment time distribution of caller i in her nth contact that occurred in the day interval m,

i.e. qin = m. We have

E[Gin(t, r, c, µ
pr,m, δpr,m;Hin)] = E[Gin(t− 1, r, c, µpr,m, δpr,m;Hin)] (21)

+ E

[

(1−Gin(t− 1, r, c, µpr,m, δpr,m;Hin))× (1− πm(t; km0 , γm0 ))Pint(1, r, c, µ
pr,m, δpr,m;Hin)

]

.

where πm(t; km0 , γm0 ) is the hazard rate of the actual waiting time distribution in day interval m

(Fm(0; km0 , γm0 ) in (1)). The right-hand side of (21) is the sum of two terms: 1) the probability

of abandoning by t − 1, and 2) the probability of not abandoning by t − 1, not receiving service

at t and abandoning at t. Finding the mean of E(Gin(t, r, c, µ
pr,m, δpr,m;Hin)) gives the manager

a proxy for caller i’s patience threshold that depends on her contact history Hin. This can enable

the manager to implement patience-based priority policies, in which callers may get a higher or a

lower priority based on their patience thresholds.

8 Concluding Remarks

Understanding callers’ abandonment behavior using their contact history data is an opportunity

for call center managers that has been overlooked in the Operations Management literature. In

this paper we try to fill in this gap using a Bayesian learning framework. We first show that

callers’ past interactions with the system reveal information about callers’ preferences and their

chance of abandonment in the future. Then to separate the impact of callers’ patience parameters

(waiting cost and valuation for service) from the impact of their contact history, we use a structural

estimation approach in a Bayesian learning setting.

In the extant literature about callers’ behavior in call centers all contacts of a caller are treated

the same, and it is assumed that callers know the exact waiting time distribution in the data.

To the best of our knowledge this paper is the first work to relax that assumption and try to

accommodate a situation where callers’ expectation about their chances of receiving service does

not necessarily match their actual values. We provide a Bayesian framework for callers’ learning
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where callers update their belief about the distribution of a waiting time distribution parameter

based on their waiting experiences in the call center. We also provide an estimation approach to use

the observation in a data set to estimate callers’ parameters that shed light on callers’ expectations

and preferences. These parameters are callers’ waiting cost and valuation for service, and callers’

prior belief about their waiting time distribution. Our estimation results show that callers are

optimistic about their delays in the system and underestimate their durations. We also show that

new callers irrespective of their priority class believe that they will receive service in less than 15

seconds even though their actual average waiting time ranges between 40 and 90 seconds. The

introduced framework can be used to manage customers’ expectation about the service quality

and to implement the patience-based scheduling policies. We compare the bayesian learning model

introduced in this work with the rational expectation framework in the extant literature and show

that our framework not only has a better fit to the data set bit also it has a better out of sample

performance. In addition, in contrast to the rational expectation framework our framework does

not produced biased estimated for callers’ reward and cost parameters.

Our paper identifies several opportunities for future research. One interesting area of research

is considering the impact of the service provided by the agent on callers’ behavior. In our data

set we cannot observe the quality of agents’ work; consequently, we did not attempt to include

learning about this part of callers’ service encounter on their behavior. In addition, we show that

changing callers’ prior belief may have a significant effect on their abandonment behavior and total

abandonment rates in the call center. One may study practical ways to impact new callers’ belief

about the waiting durations.
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Online Appendix for “Impact of Callers’ History on
Abandonment: Model and Implications”

A Stratified Cox Regression to Study the Impact of Past History

on Caller Abandonment

In this section, we provide more details about the stratified Cox regression that was used to study

the impact of callers’ history on their abandonment behavior.

Suppose that hi,k(t) is the hazard rate of the abandonment time distribution for caller i from

stratum k with the set of independent variables Xi. Note that the stratum in our setting are

the priority groups. The vector Xi includes variables that may impact the caller’s abandonment

behavior. In our setting Xi includes whether callers abandoned or not in their last contact, their

waiting time in the last contact, the interaction term between call outcome and the waiting time

variable, the time of the day and week day dummy variables, and the contact number. In the Cox

regression analysis we assume that

hi,k(t) = h0,k(t) exp(Xiβ
T ), (22)

where h0,k(t) is the baseline hazard function for stratum k that can be any function of t as long

as h0,k(t) > 0. The function h0,k(t) does not have to be specified. The vector β is the vector of

coefficients of the independent variables, which captures the impact of the independent variables

on callers’ abandonment hazard rates. Given that the exponent term in (22) does not involve a

time variable, the ratio of hazard functions of two callers does not depend on time and h0,k(t). To

be more specific, the ratio of hazard function of callers i and j is given by

hi,k(t)

hj,k(t)
= exp((Xi −Xj)β

T ). (23)

As can be seen in (23) in the Cox regression analysis it is assumed that the ratio of hazard functions

of two callers from the same stratum only depend on the difference between their independent

variables. This assumption is called the proportional hazard rate assumption.

B Additional Survival Analyses

For robustness check we perform the cox regression for each priority group in isolation. Note that in

Section 3.2 we use a stratified cox regression, which assumes different baseline hazard function for

different priority groups but would lead to the same coefficients for all priority groups (parameter β

in (23)). If we run the regression for each priority group separately, we not only consider different

baseline hazard functions but also we will get different parameters. Tables 13 to 15 show the cox

regression results for each priority group separately.
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Table 13: The results of the Cox regression for the high priority callers.

Variable Coefficient (Std. Err.)

O−1 0.6272∗∗ (0.1329)
W−1 -0.0017∗∗ (0.0003)
O−1 ×W−1 0.0013∗∗ (0.0005)
DRush−hour -0.1571∗∗ (0.0723)
Weekdays -0.0618 (0.1261)
Contact number 0.0047∗∗ (0.0013)

** Denotes statistically significant at 0.05.

Table 14: The results of the Cox regression for the medium priority callers.

Variable Coefficient (Std. Err.)

O−1 0.7892∗∗ (0.0527)
W−1 -0.0013∗∗ (0.0002)
O−1 ×W−1 0.0006∗∗ (0.0002)
DRush−hour -0.0207 (0.0317)
Weekdays -0.0132 (0.0533)
Contact number 0.0083∗∗ (0.0011)

** Denotes statistically significant at 0.05.

As can be seen in Table 13 to 15, the sign and significance of the coefficients for the past history

variables (O−1, W−1 and O−1 ×W−1) are the same as those in Table 2.

C Proofs

Proof of Proposition 1. Without loss of generality we suppress the superscript for the day interval

m. Given that the distribution of the waiting time is Weibull(k0, γ0) and caller i’s posterior belief

about γ0 by time t is Inv−Gamma(µpo
in(t), δ

po
in(t)), the cdf of caller i’s prior predictive distribution

denoted by F pr
in (t) is given by

F po
in (t) =

∫ ∞

0
(1− e

− tk0
γ )(

δpoin(t)
µ
po
in(t)

Γ(µpo
in(t))

e
−

δ
po
in

(t)

γ

γ(µ
po
in(t)+1)

) dγ, (24)

where the first term inside the integral is the cdf of the waiting time distribution and the second

term is the pdf of the inverse gamma distribution with the parameters µpo
in(t) and δpoin(t). We can

rewrite (24) as follows:

F po
in (t) =

∫ ∞

0
(
δpoin(t)

µ
po
in(t)

Γ(µpo
in(t))

e
−

δ
po
in

(t)

γ

γ(µ
po
in(t)+1)

) dγ −

∫ ∞

0
e
− tk0

γ (
δpoin(t)

µ
po
in(t)

Γ(µpo
in(t))

e
−

δ
po
in

(t)

γ

γ(µ
po
in(t)+1)

) dγ,

= 1−
δpoin(t)

µ
po
in(t)

(δpoin(t) + tk0)
µ
po
in(t)

∫ ∞

0
(
(δpoin(t) + tk0)

µ
po
in(t)

Γ(µpo
in(t))

e
−

δ
po
in

(t)+tk0

γ

γ(µ
po
in(t)+1)

) dγ. (25)
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Table 15: The results of the Cox regression for the low priority callers.

Variable Coefficient (Std. Err.)

O−1 0.7173∗∗ (0.0354)
W−1 -0.0016∗∗ (0.0001)
O−1 ×W−1 0.0006∗∗ (0.0002)
DRush−hour -0.0531∗∗ (0.0213)
Weekdays 0.0833∗∗ (0.0343)
Contact number 0.0044∗∗ (0.0007)

** Denotes statistically significant at 0.05.

The term inside the integration in (25) is the pdf of an inverse gamma distribution with parameters

µpo
in(t) and δpoin(t) + tk0 ; consequently, it is equal to 1. Therefore, we have

F po
in (t) = 1− (

δpoin(t)

δpoin(t) + tk0
)µ

po
in(t). (26)

Given, (26) the calculation of πpo
in(t) in (5) is trivial.

Next, we characterize the Bayesian updating. Denote by Iin(t) the information caller i has

acquired about the waiting time in her nth contact by time t. Furthermore, denote by sin the

amount of time caller i has to wait to enter the service stage in her nth contact, which is a draw

from the actual waiting time distribution Weibull(k0, γ0). Recall that the outcome of caller i’s

contact by time t is Oint. If Oint = 1 the caller has abandoned or has not received service yet.

Consequently, she believes that the waiting time in her nth contact is longer than t, which means

Iin(t) = {sin > t}. However, if Oint = 0 the caller has received service by time t. Consequently, we

have Iin(t) = {sin = t}.

Denote by gprin(γ) the prior belief of caller i about the distribution of the scale parameter before

her nth contact. Also, denote by gpoin(γ|I) the posterior belief about the distribution of the scale

parameter if the caller has acquired information I about sin. Given that Iin(t) ⊂ Iin(t− 1) ⊂ ... ⊂

Iin(0), we have gpoin(γ|Iin(t) ∩ Iin(t − 1) ∩ ... ∩ Iin(0)) = gpoin(γ|Iin(t)). In other words, considering

updating while waiting in the queue, the only relevant information for making decision in period t

is Iin(t). Consequently, to find µpo
in(t) and δpoin(t), we need to find gpoin(γ|Iin(t)).

Suppose that the caller entered the service stage at t = sin, i.e. Iin(t) = {sin = t}. Hence, we
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have Oint = 0. Then by Bayes’ rule we can write

gpoin(γ|Iin(t)) =
f(t; k0, γ)g

pr
in(γ)

∫

f(t)gprin(γ)dγ
,

=
(k0
γ
tk0e

− tk0−1

γ )(
δ
pr
in

µ
pr
in

Γ(µpr
in)

e
−

δ
pr
in
γ

γ
(µ

pr
in

+1)
)

∫∞
0 (k0

γ
tk0e

− tk0−1

γ )(
δ
pr
in

µ
pr
in

Γ(µpr
in)

e
−

δ
pr
in
γ

γ
(µ

pr
in

+1)
) dγ

,

=

(γ+tk0 )µ
pr
in

+1

Γ(µpr
in+1)

e
−

δ
pr
in

+tk0

γ

γ
µ
pr
in

+2

∫ (γ+tk0 )µ
pr
in

+1

Γ(µpr
in+1)

e
−

δ
pr
in

+tk0

γ

γ
µ
pr
in

+2
dγ

. (27)

The numerator of (27) is the pdf of an inverse gamma distribution with parameters µpr
in + 1 and

δprin + tk0 , and the denominator is its integral. Therefore, we have

gpoin(γ|Iin(t)) =
(γ + tk0)µ

pr
in+1

Γ(µpr
in + 1)

e
−

δ
pr
in

+tk0

γ

γµ
pr
in+2

. (28)

The right-hand side of (28) is the pdf of an inverse gamma distribution with parameters µpr
in + 1

and δprin + tk0 . By definition, gpoin(γ|Iin(t)) is the pdf of caller i’s posterior belief with parameters

µpo
in(t) and δpoin(t). Consequently, for the case in which the caller does not abandon and enters the

service stage after t seconds, we have

µpo
in(t) = µpr

in + 1 = µpo
in + 1−Oint,

δpoin(t) = δprin + tk0 .

For the case in which the caller does not receive service, or abandons, by time t (Oin(t) = 1,

Iin(t) = {sin > t}), using the Bayes’ rule the pdf of caller i’s posterior belief is given by

gpoin(γ|Iin(t)) =
(1− F (t; k0, γ))g

pr
in(γ)

∫

(1− F (t; k0, γ))g
pr
in(γ)dγ

,

=
e
− tk0

γ (
δ
pr
in

µ
pr
in

Γ(µpr
in)

e
−

δ
pr
in
γ

γ
(µ

pr
in

+1)
)

∫∞
0 e

− tk0
γ (

δ
pr
in

µ
pr
in

Γ(µpr
in)

e
−

δ
pr
in
γ

γ
(µ

pr
in

+1)
) dγ

,
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=

(γ+tk0 )µ
pr
in

Γ(µpr
in)

e
−

δ
pr
in

+tk0

γ

γ
µ
pr
in

+1

∫ (γ+tk0 )µ
pr
in

Γ(µpr
in)

e
−

δ
pr
in

+tk0

γ

γ
µ
pr
in

+1
dγ

,

=
(γ + tk0)µ

pr
in

Γ(µpr
in)

e
−

δ
pr
in

+tk0

γ

γµ
pr
in+1

. (29)

The right-hand side of (29) is the pdf of an inverse gamma distribution with parameters µpr
in and

δprin + tk0 . Therefore, for the case in which the caller does enter the service stage or abandons by

time t, we have

µpo
in(t) = µpr

in = µpr
in + 1−Oint,

δpoin(t) = δprin + tk0 .

Finally, under the assumption that callers do not forget what they learned in the past, callers’

belief at the end of contact n would be the same as their belief at the beginning of contact n+ 1.

Therefore, we have: µpr,m
in+1 = µpo,m

in (win) and δpr,min+1 = δpo,min (win).

Proof of Proposition 2. Consider caller i who updates her belief about the scale parameter

of the waiting time distribution according to the updating process illustrated in Proposition 1.

Recall that µpo
in+1 and δpoin+1 denote the parameters of caller i’s belief at the end of contact n (and

beginning of contact n+1).We show that if n→∞ the mean of callers’ belief distribution converges

to γ0 and its variance converges to 0.

Suppose that sin is the amount if time the caller needs to wait in her nth contact to receive

service, which is a draw from the Weibull distribution of the waiting time with pdf and cdf given

in (1). Moreover, suppose that the patience time of caller i denoted by ain is a draw from a dis-

tribution with cdf and pdf given by G(·) and f(·), respectively. Caller i will receive service if her

patience level is larger than the amount of time she need to wait, and will abandon otherwise.

Consequently, her waiting time observed in the data is given by win = min(sin, ain). Based on

Proposition 1 we have µpo
in+1 = µpr +

∑n
j=1(1−Oij) and δpoin+1 = δpr +

∑n
j=1w

k0
ij .

Let Meanin+1 and V arin+1 denote the mean and variance of callers’ belief about γ0 at the be-

ginning of their (n+1)th contact. Following the inverse gamma assumption about the distribution

of callers’ belief, we have

Meanin+1 =
δpoin+1

µpo
in+1 − 1

=
δpr +

∑n
j=1w

k0
ij

µpr +
∑n

j=1(1−Oij)− 1
, (30)
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and

V arin+1 =Mean2in+1
1

µpo
in+1 − 2

=Mean2in+1
1

µpr +
∑n

j=1(1−Oij)− 2
. (31)

We first show that limn→∞Meanin+1 = γ0 and then limn→∞ V arin+1 = 0.

Part 1. limn→∞Meanin+1 = γ0:

Based on Equation (30), we can write

lim
n→∞

Meanin+1 = lim
n→∞

δpr

n
+

∑n
j=1 w

k0
ij

n

µpr−1
n

+
∑n

j=1(1−Oij)

n

. (32)

Given that limn→∞
δpr

n
= 0, limn→∞

µpr−1
n

= 0, and the independence of the sin and ain (recall

that win = min(sin, ain)), we can use the strong law of large numbers to rewrite (32) as follows :

lim
n→∞

Meanin+1 =
EgEf (wij)

EgEf (1−Oin)
,

=
Eg(
∫ aij
0 sk0f(s)ds+

∫∞
aij

ak0ij f(s)ds)

Eg(
∫ aij
0 f(s)ds)

,

=
Eg([−(s

k0 + γ0) exp(
−sk0
γ0

)]
aij
0 + ak0ij exp(

−sk0
γ0

))

Eg(1− exp(−s
k0

γ0
))

, (33)

=
Eg(−a

k0
ij exp(

−sk0
γ0

)− γ0 exp(
−sk0
γ0

) + γ0 + ak0ij exp(
−sk0
γ0

))

Eg(1− exp(−s
k0

γ0
))

,

=
γ0Eg(1− exp(−s

k0

γ0
))

Eg(1− exp(−s
k0

γ0
))

.

Given our assumption that G(0) < 1, the patience time distribution will have some mass at non-zero

values. Consequently, we have Eg(1− exp(−s
k0

γ0
)) 6= 0, and we can write

lim
n→∞

Meanin+1 =
γ0Eg(1− exp(−s

k0

γ0
))

Eg(1− exp(−s
k0

γ0
))

= γ0. (34)

Part 2. limn→∞ V arin+1 = 0:
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Given Equations (31) and (34) we have

lim
n→∞

V arin+1 = γ20 lim
n→∞

1
n

µpr−2
n

+
∑n

j=1(1−Oij)

n

, (35)

= γ20 lim
n→∞

1
n

EgEf (1−Oin)
,

= γ20 lim
n→∞

1
n

Eg(
∫ aij
0 f(s)ds)

,

= γ20 lim
n→∞

1
n

Eg(1− exp(−s
k0

γ0
))
.

Given that Eg(1− exp(−s
k0

γ0
)) 6= 0, from (35) we have limn→∞ V arin+1 = 0.

D Estimation Procedure for the Rational Expectation Model

We use the following procedure to estimate the parameters of the rational expectation model.

a) We first use the Kaplan-Meier estimator (Kaplan and Meier (1958)) to non-parametrically

estimate callers’ waiting time distribution denoted by FRE,m(t) and the hazard rate of this

distribution denoted by πRE,m(t) for m=1, 2 corresponding to Rush-hour and Non-Rush-

hours.

b) Using equations (9) to (12) we can calculate caller i’s abandonment probability in her nth

contact under the rational expectation equilibrium assumption denoted by PRE
int (1, ri, ci) by

replacing πpo,m
in (t) by πRE,m(t).

c) The log-likelihood function for callers’ actions denoted by logLRE is given by

logLRE(ΘRE
0 ) =

N
∑

i=1

log

(

2
∑

l=1

ni
∏

n=1

I{qin=m}

win
∏

t=0

log
(

PRE
int (1, r

l, cl)
)Idin,t=1

(36)

×
(

1− PRE
int (1, r

l, cl)
)Idin,t=0

)

.

We maximize (36) to estimate ΘRE
0 = {(ηl, rl, cl){l=1,2}}. Please see Aksin et al. (2013) for more

details.
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