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Abstract

A risk-averse agent can sell claims to an asset of uncertain value to investors who have private

information. When investors can choose how much information to acquire, the agent optimally

issues information-sensitive securities in each market (e.g., debt and equity). When the value of

the asset varies over time, the agent chooses to retain and, at times, repurchase a portion of the

claims for issuance at a later date. The agent's choice to smooth the information sensitivity of the

claims issued, across markets and over time, has novel implications. First, the relative information

insensitivity of debt can render it a suboptimal security for �nancing. Second, if the agent has

private information about cash �ows, he can signal that he has better information by selling, rather

than retaining, a larger claim to the asset. Finally, while the sale of illiquid securities generates

increased uncertainty at issuance, it can lower the agent's uncertainty when raising capital in the

future.
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1 Introduction

When an owner of an asset has decided to sell, he can do so multiple ways. He must decide to whom

to sell, how much to issue, and over what time frame to liquidate his position. In practice, we observe

owners availing themselves of this �exibility by issuing multiple securities, sometimes sequentially.

Consider the exit strategy of a private equity �rm. Such �rms often utilize leveraged recapitalizations,

selling debt and using the proceeds to return capital to equityholders before selling their equity posi-

tion.1 Furthermore, we observe private equity �rms choosing partial exit, as in an initial public o�ering,

where they generally retain a portion of their holdings for sale at a later date. Similarly, issuers of

asset-backed securities typically sell a �rst-loss, equity tranche, along with multiple investment-grade

and speculative-grade bonds. These issuers can also choose to retain di�erent tranches: while some

hold onto equity only, others hold a fraction of each security issued.

We develop a model in which the owner of the asset faces uncertainty about the information

investors possess about the asset's value. This information varies endogenously, as investors choose

how much information to acquire based on the securities sold, or exogenously, as information about

the underlying value of the asset becomes available over time. We show that, in the face of this price

uncertainty, a risk-averse owner optimally sells information-sensitive securities in multiple, imperfectly

integrated markets (e.g., debt and equity) and retains a claim to the asset for future sale.2 Notably,

information-insensitive securities (e.g., riskless debt) play no role in the optimal issuance policy, and

relatively information-insensitive securities, such as risky debt, have a diminished place. The choice to

smooth the information sensitivity of his issuance generates situations in which the owner can signal

his private information via issuance, instead of retention, and creates a role for illiquid securities in

the optimal capital structure. While theoretically novel, our predictions are largely consistent with

issuance patterns observed in practice in a variety of settings.

Section 2 introduces the basic framework. An uninformed, risk-averse agent owns a risky asset.

The agent chooses how much debt to issue and sells the residual equity. Risk-neutral investors, who

trade in imperfectly integrated markets, choose how much private information to acquire given the

information-sensitivity of the securities available for trade. Information acquisition, in combination

with information sensitivity, generates uncertainty about the price investors are willing to pay for each

security.

The optimal capital structure minimizes the agent's uncertainty about the price he receives for

selling claims to the asset.3 We show that the agent always issues information-sensitive debt and equity.

Consider how investors respond when this is not the case. If the debt issued is information-insensitive,

debt investors acquire no information. Information sensitivity is concentrated in the residual equity,

1Over the past decade, these loans have accounted for approximately $40 billion/year (approximately 10% of issuance
volume) in the leveraged loan market.

2In our model, information sensitivity is de�ned as the di�erence in the expected value of the security across states.
An information-insensitive security (e.g., risk-free debt) has the same expected value in each state. Imperfect integration
implies that the beliefs of the marginal investor in each market are not perfectly correlated.

3In Appendix B.4, we consider a static setting in which information acquisition also a�ects the agent's expected
proceeds.
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which leads equity investors to maximize their information acquisition. But this is not optimal: the

agent is issuing the security with the most information sensitivity to the investors who are acquiring

the most information, thereby maximizing his uncertainty.

Notably, though issuing an information-insensitive security can minimize aggregate information

acquisition, it is not optimal for the agent.4 Instead, the agent's issuance decision is determined by

the relative information possessed by investors in each market. The optimal capital structure smooths

across both sources of uncertainty: the agent issues a more information-sensitive security to the market

which acquires less information. Thus, the minimum-variance capital structure, optimally chosen by

the agent, does not require a minimum-variance security, e.g., risk-free debt.5 This result stands in

contrast to settings, such as those considered by Dang, Gorton, and Holmström (2015) and Yang (2015),

in which the agent optimally minimizes the costs of asymmetric information by issuing a minimally

information-sensitive security.

In the static setting, we show that the beliefs of the marginal investor in each market are imperfectly

correlated. This induces variation across markets in the price of the information-sensitive portion of

each security, which in turn induces the agent to issue information-sensitive securities in each market.6

In a multi-period setting, when information about the fundamental value of the asset is revealed in

each period, the price within a market can exhibit variation over time. Consequently, rather than

selling the entire asset all at once, we show that this variation leads the agent to retain a portion of

his claim for issuance in future periods.

In Section 3, we characterize the optimal dynamic retention policy. At the beginning of each period,

the agent chooses what fraction of the asset to retain for sale at a later date. To focus on the role of

time-variation, we begin by restricting the agent to equity issuance and assume that the precision of

investors' signals is exogenously speci�ed. Prices in each period are imperfectly correlated due to the

revelation of new information about fundamentals; smoothing his issuance over time allows the agent

to lower the uncertainty he faces. We show that the non-linear relation between investor information

and the value of the asset generates predictable changes in the expected price of the asset.7 As a result,

the liquidation path need not be monotonic � when the expected gains are su�ciently large, the agent

repurchases shares for later sale.8 Consistent with this prediction, Lakonishok and Lee (2001) �nd that

purchases, not sales, have predictive power for future returns. This occurs despite the agent possessing

4As we show in Proposition 6, if information-sensitivity is concentrated in one market, reducing the information
sensitivity of that security leads to a small decline in the information obtained in that market, but a large increase in
the other market, due to the convexity of the cost function.

5It is costless, though also without bene�t, for the agent to issue risk-free debt, in addition to risky debt, in our
setting. If additional issuance also generated any transaction costs, however, the agent would issue risky debt, only.

6This e�ect is not limited to debt and equity. If the agent had costless access to other distinct markets, he would �nd
it bene�cial to issue information-sensitive securities more broadly. Faulkender and Petersen (2006) �nd evidence that
when �rms are able to issue public debt, they increase their borrowing, and generally do so by accessing both the bank
and bond markets.

7A wedge is generated between the expectation of the current period's price and fundamentals (i.e., the next period's
price), which leads to predictability in expected returns. As in Albagli, Hellwig, and Tsyvinski (2015), this is due to (i)
limits to arbitrage, (ii) asymmetric information, and (iii) the aforementioned non-linearity.

8Issuance can occur even when the agent expects the price to increase. As a result, issuance is a noisier predictor of
expected future returns.
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no private information about the underlying value of the asset.

Having established the agent's incentive to smooth his issuance of information-sensitive securities

both across markets and over time, we then consider its implications.

We begin by assuming that the agent must make an initial investment in order to acquire the asset.

In Section 4, the agent chooses how best to �nance the investment, anticipating selling any remaining

claims to the asset at a future date. The agent is not �nancially constrained � he has access to liquid

assets � but he can raise no more initial capital from �nancial markets than is necessary to make the

investment.9 We show that, in contrast to the pecking order of Myers and Majluf (1984), the agent

prefers to issue equity when the required level of investment is low, turning to debt only when equity

issuance becomes too costly. Moreover, the agent only utilizes his liquid assets when the required

outlay is su�ciently high, and then only in tandem with issuance in the capital markets.

In standard settings with asymmetric information, the relative information insensitivity of debt,

and the cash �ows to which it is sensitive, makes it optimal for raising capital. The agent in our

model, however, is concerned not just with the optimal security with which to �nance an investment,

but with the entire capital structure. In particular, the agent must consider how his �nancing decision

ultimately a�ects the residual piece he owns and later sells. While issuing debt minimizes the infor-

mation sensitivity of current �nancing, it leaves the agent with a more information-sensitive claim to

sell at a later date. For low levels of investment, the agent therefore prefers equity �nancing.10 On the

other hand, the agent faces more uncertainty about equity investors' beliefs due to their anticipation

of future debt issuance.11 As a result, when the required investment is su�ciently high, debt becomes

preferable to equity. Finally, note that by utilizing his liquid assets, the agent reduces the amount of

�nancing required from capital markets, which, in turn, reduces �nancing uncertainty. There exists a

threshold level of investment at which point the agent can optimally smooth his issuance across time

using capital markets; above this threshold, he begins to utilize his liquid assets so that his �nancing

needs are reduced and this optimum is preserved. It is interesting to note that, in practice, private

equity �rms generally combine their liquid assets with capital raised via debt (a leveraged buyout)

along with equity (as part of a syndicate) when investing in a new business. Furthermore, the empiri-

cal literature (e.g., Frank and Goyal (2003); Fama and French (2005)) provides evidence that, amongst

young, high-growth �rms, equity issuance is common.

In Section 5, the agent has private information about the underlying cash �ow of the asset. As in

Leland and Pyle (1977), his issuance decision can signal his type, i.e., his private information. We �rst

show that, when the agent can credibly disclose his private information, equilibria exist in which higher

types will optimally choose to retain a large claim to the risky asset.12 This occurs because higher

types must retain a larger claim to optimally smooth their issuance over time. In contrast, when we

introduce private information, equilibria exist in which higher types signal through increased issuance,

9Such a restriction could be motivated by moral hazard.
10Equity �nancing is always information-sensitive. When the level of required investment is su�ciently low, debt

issuance can be information-insensitive.
11Equity investors account for the proceeds of future debt issuance, which are paid as dividends, in determining their

valuation today. Debt holders, on the other hand, have no claim to any future issuance.
12In the setting considered, �higher� types have both higher expected cash �ows and lower information sensitivity.
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instead of through retention. In standard models of adverse selection and issuance (e.g., DeMarzo

(2005)), the agent would like to sell his entire claim today. In signaling equilibria, agents take costly

actions which reveal their private information to other agents � if agents of every type want to issue

today, the only direction in which to signal is through retention.13 In contrast, in our model, the agent

would like to retain some of his claim for sale at a later date. As a result, equilibria exist in which

excess issuance serves as a credible signal.

The analysis discussed thus far assumes the existence of cross-market learning, i.e., the ability

to condition on prices in other markets. We consider its impact on price uncertainty in Section 6.

Cross-market learning generates two countervailing e�ects. Holding investors' information acquisition

decisions constant, cross-market learning increases the information available to investors. Moreover,

this conditioning increases the correlation of investors' beliefs across markets. However, prices in other

markets serve as free, public signals, to which investors respond by choosing to acquire less precise

private signals. In our static setting, we show that when the marginal cost of information is low and

fundamental uncertainty is high, this endogenous response can lower price uncertainty. When this

is true, the agent prefers to be transparent at issuance, releasing information about interest in both

markets.

When a previously-issued security is illiquid, i.e., does not trade, investors in other securities are

unable to condition upon its price in the secondary market. This illiquidity, however, also a�ects the

agent's uncertainty in the primary market. We begin by showing that investors form more precise

expectations about the value of an illiquid security, leading to increased price uncertainty. This implies

that issuing illiquid securities, such as bank loans and private equity, would generally be suboptimal in

a static setting. This need not be true in a dynamic setting. If the agent anticipates future issuance,

this illiquidity can be valuable � the inability to condition on previous issues can lower the agent's

uncertainty about future issuance.14 In such situations, bank loans and private equity may be preferable

early in a �rm's life.

We conclude, discussing directions for future research, in Section 7.

1.1 Related Literature

This paper builds on the noisy rational-expectations equilibrium literature (e.g.,Diamond and Verrec-

chia (1981); Hellwig (1980)) which focuses on the role of information acquisition (e.g., Grossman and

Stiglitz (1980); Verrecchia (1982)), trade in multiple securities (e.g., Admati (1985) ), and the infor-

mational role of derivatives (e.g., Brennan and Cao (1996)). While many of these early papers focused

on securities with linear payo�s, there is now a growing literature (e.g., Barlevy and Veronesi (2000);

Vanden (2008); Breon-Drish (2015)) which allows for and examines the e�ect of a non-linear relation

between payo�s and investor information, as in our model.

Our model of �nancial markets is most closely related to Albagli et al. (2015) and Chabakauri, Yuan,

13Other analyses explore alternative dimensions along which the agent can signal, including price (e.g., Grinblatt and
Hwang (1989); Welch (1989)) or liquidity (e.g., Williams (2015)).

14In Section C.3, we argue that this illiquidity can also prevent investors from obtaining large stakes in the �rm, which
reduces their incentive to learn.
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and Zachariadis (2015). We extend the setting of Albagli et al. (2015) with risk-neutral investors who

trade on imperfect information. The information in our model, however, is about the likelihood of

each underlying state, as in Chabakauri et al. (2015). This innovation provides a tractable setting in

which to study both information acquisition and price dynamics, which are absent from both papers.

Both Albagli et al. (2015) and Chabakauri et al. (2015) discuss the capital structure implications of

asymmetric information, but focus on its impact on a security's expected value. In our setting, similar

implications are considered, but the focus of our paper is on the uncertainty generated by investors'

information acquisition.

Investors in the model extract non-redundant signals from both bond and stock prices. In Back and

Crotty (2015), market makers learn from bond and stock order �ow, but an investor is endowed with his

information and free to trade in either market. Similarly, Albagli et al. (2015) take the informational

characteristics of investors in each market as given. In contrast, we allow investors to choose how

much information to obtain, given the security available for trade and the information obtained by

investors in other markets. This is similar to Goldstein, Li, and Yang (2013), in which segmented

investors choose whether to acquire a signal, given their beliefs about the information contained in

prices across markets. That paper's focus is on correlated claims to the same cash �ow (e.g., CDS

and the underlying bond), and more importantly, does not consider how an issuer might optimally

choose to structure claims/issuance, given the behavior of investors. Finally, in contrast to each of

these papers, but similar to the market participation literature (e.g., Allen and Gale (1994)), we allow

some investors to choose, ex-ante, in which market to trade.

From the issuance perspective, our static model most closely resembles Boot and Thakor (1993),

in which a risk-neutral agent chooses how to split and subsequently sell claims to the entire �rm to

investors whose information acquisition depends upon the securities issued. We assume that the agent is

risk-averse, however, and that the agent can sell claims in imperfectly integrated markets. Our paper is

part of a large literature in which the information acquisition of investors drives �rm issuance decisions,

including Boot and Thakor (1993), Fulghieri and Lukin (2001), Axelson (2007) , and Yang (2015). In

contrast to each of these papers, in our model, prices in each market are imperfectly correlated. This

is similar toRahi and Zigrand (2009), which considers how arbitrageurs, with access to all markets,

might design securities for trade with investors who are restricted to trade a subset of the securities.

Tranching is optimal, as in DeMarzo (2005) and Riddiough (1997), but in our model this is due to

di�erences in the information acquired in each market. The optimal division of claims is based on the

information-sensitivity of each security and endogenous information acquisition; however, unlike Dang

et al. (2015) and Yang (2015), in our setting, information-insensitivity in one tranche is undesirable,

as it concentrates the information-sensitivity in the other tranche. This makes our result more similar

to Farhi and Tirole (2015), though in their model the solution to this problem is to bundle the two

components together.

In a dynamic setting, we allow the agent to sell his claim over time, and as in DeMarzo and

Uro�sevi¢ (2006), Hennessy, Livdan, and Miranda (2010) and Bond and Zhong (2015), we allow for

share repurchases. In each paper, the relevant friction is asymmetric information; however, in their
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models, the issuer has private information, whereas in our setting, investors acquire private information.

Our paper is related to the literature on violations of the pecking order of Myers and Majluf

(1984). Fulghieri and Lukin (2001) and Yang and Zeng (2015) argue that equity issuance is optimal

when the agent wants to encourage information acquisition. Fulghieri, García, and Hackbarth (2015)

and Chakraborty, Gervais, and Yilmaz (2011) show that equity-like securities can be less sensitive

to the e�ects of adverse selection, and therefore optimal, depending upon the assumptions about the

distributional nature of the asymmetric information. In Axelson (2007), equity is preferred when

raising capital in good states of the world is more valuable to the issuer. In contrast, our results arise

through a novel channel: the agent's desire to smooth his sources of uncertainty across markets.

We also consider separating equilibria, as in Leland and Pyle (1977) and DeMarzo (2005), however,

we consider settings in which issuance, rather than retention, can serve as a credible signal of type.

Along this dimension, our work is related to the IPO literature in which �rms can signal their type by

issuing at a lower price (e.g., Grinblatt and Hwang (1989); Welch (1989)). In both papers, issuers also

choose how much to sell, but in Grinblatt and Hwang (1989), retention is a positive signal of �rm value,

and in Welch (1989), issuers sell only what is necessary to �nance their investment in equilibrium. In

our setting, however, the price is set by investors; furthermore, issuance can signal a higher asset value

because it generates excess uncertainty.15

2 Static Issuance

We begin by describing the basic structure of the model, characterizing the �nancial market equilibrium,

and solving for the optimal issuance policy in a static setting.

2.1 Model Setup

2.1.1 Assets and Timing

A risk-averse agent owns an asset with uncertain future payo�s.16 There are three periods, t ∈ {0, 1, 2},
and two states of the world, s ∈ {L,H}.17 At time-0, it is known that the asset payo�, x, will be

drawn from either GH (in the high state) or GL (in the low state). Both Gs are known, non-degenerate

distributions and GH �rst-order stochastically dominates GL. It is without loss of generality to allow

for limited liability: we assume Gs(x) = 0 for all x < 0. We de�ne the expected payo� of the asset in

each state:

Vs ≡
∫ ∞

0
x dGs(x),

15In Grinblatt and Hwang (1989), retention also serves as a signal of lower variance � in our model, lower variance
and higher asset value are always positively related, and so retention can also signal higher variance.

16While we assume the agent is endowed with the asset, our analysis accommodates a setting in which the agent is
allowed to sell his entire claim at the same time he is raising capital to acquire the asset.

17In Appendix B.1, we modify the asset payo� to allow for N > 2 states. Under analogous distributional assumptions,
the tenor of our main results remains unchanged.
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and assume that both VL and VH are �nite.

The agent does not know q ≡ P[s = H] with certainty, but knows

q = Φ[z], z ∼ N (µz, τ
−1
z ),

where Φ is the cumulative distribution function of the standard Gaussian probability distribution.18

At time-1, z is revealed. At time-2, the asset payo� is determined. There are no actions which can

be taken to alter the distribution of the asset's payo�. There is a risk-free asset in perfectly elastic

supply and the risk-free rate is normalized to zero.

2.1.2 Market Participants

In addition to the single, risk-averse agent there exists a unit-measure continuum of risk-neutral in-

vestors. The initial information set of the agent and investors is identical; they have symmetric beliefs

about the distributions, Gs, and share a common prior about the distribution of z. Each investor,

however, is endowed with the ability to generate a private signal about the expected value of the asset.

More speci�cally, each investor, indexed by i ∈ [0, 1], observes

si = z + εi εi ∼ N (0, τ−1
i ), E[εiεj ] = 0 ∀j 6= i, j ∈ [0, 1]

By observing a private signal which conditions on z, investors can more precisely estimate from

which distribution the payo� will be drawn.19 Each investor can choose the precision of his signal

(τi ≥ 0), but his choice is subject to a cost function, C(τi). We assume only that the cost function

possesses standard characteristics: C is continuous, C(0) = C ′(0) = 0, and C ′, C ′′ > 0 for all τ . The

cost function is identical across investors.

Market Segmentation: Investors are restricted in the type of securities they can purchase. While

they will be able to observe security prices in other markets, and use those prices to inform their beliefs,

they can only purchase the securities trading in their market. Our focus will be on two markets:

debt and equity.20 The total measure of debt (mD) and equity (mE) investors will be determined

endogenously and sums to one (mD +mE = 1), i.e., every investor trades in one market or the other.

Investors are restricted from shorting and are subject to position limits.21

The market segmentation extends to the liquidity shocks (noise trade) in each market. We assume

there are liquidity shocks, distributed across markets, such that

18This formulation implies that q ∈ (0, 1); however, because z is not drawn from a standard Gaussian distribution, q
is not uniformly-distributed.

19Many models of information acquisition allow agents to condition directly upon the future, realized payo�. One can
think of the signal available to investors as an approximate coarsening of these technologies.

20In Section C.2 we we discuss the motivation and evidence for market segmentation in more detail and in Section 2.4
consider the implications of broader segmentation, e.g., segmentation based on credit rating or exchange.

21The assumption that investors are unable to short is unnecessary. Allowing for (bounded) short positions would
make learning more valuable for investors, but should not change the optimal capital structure. Furthermore, such a
restriction is observed more generally in security issuance. Investors are risk-neutral, and so position limits are necessary
to bound their demand.
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ud

ue

)
∼ N

([
0

0

]
,

[
τ−1
n 0

0 τ−1
n

])
and that these shocks generate price-independent demand for a fraction Φ(ud), Φ(ue) of any issuance

in the debt and equity markets, respectively. For tractability, we assume that liquidity shocks are

uncorrelated and have identical second moments.

In Appendix B.2, we allow investors to trade in both markets and allow the variance of liquidity

shocks to di�er across markets; doing so leaves our main results unchanged.

2.1.3 Issuance

Due to the di�erence in their risk preferences, the agent would like to sell the asset to investors. If he

sells at time-1, he receives

E1[x] = VL + q∆V ∆V ≡ (VH − VL) (1)

from investors.22 At time-0, the only term in (1) about which the agent is uncertain is the realization

of q. Instead of waiting for this uncertainty to be resolved, however, the agent could sell claims to the

asset at time-0.

We assume that the agent has mean-variance preferences over the proceeds he receives for the

asset. He optimally chooses a face value of debt, F , to sell in the debt market; the residual claim is

sold in the equity market.23 Investors choose (i) in what market to trade, so that ex-ante returns are

equalized across markets, and (ii) the precisions of their private signals, to maximize their expected

pro�ts. These are determined jointly in equilibrium.

Importantly, the agent does not set the price of each security. Instead, prices are determined in

the market using the rational expectations equilibrium of Albagli et al. (2015). Using their private

information, as well as the information contained in the price of debt (pD) and price of equity (pE),

each investor submits his demand schedule and markets clear.24 The price-setting process is detailed

in the next section.

2.2 Financial Market Equilibrium

To determine his optimal capital structure, the agent must form beliefs about the price he will receive

for each claim. If the agent issues debt with face value F , then given the distribution of payo�s

22The agent would never wait until time-2 to sell the asset. At time-1, the agent and the investors have the same
expectation of the asset's payo�; however, due to the residual uncertainty in the asset's payo�, and the agent's risk-
aversion, he always prefers to sell before the cash �ow is realized.

23Under the assumption that liquidity shocks are identical within each market, the agent is indi�erent between issuing
(i) a single debt claim with face value F and (ii) multiple, potentially subordinated, debt claims with a total face value
of F within the debt market.

24In Appendix B.3, we explore whether or not, upon observing (and conditioning upon) the market-clearing prices,
the agent would choose to accept the o�ered prices. In short, with su�cient risk-aversion, the o�er is always accepted,
and so we focus on that case here.
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in each state, and limited liability, we can write the expected value of debt in each state Ds(F ) ≡
E[min(F, x)|x ∼ Gs]. Similarly, given F , the expected value of equity in each state can be written

Es(F ) ≡ E[max(x−F, 0)|x ∼ Gs]. We can then solve for the price of debt and equity, taking investors'

choice of signal precision and market as given.

In addition to their private signal, si, each investor conditions on the price of debt and the price

of equity. Investors di�er only in their beliefs about the likelihood of each state, and as a result, this

will be the only source of variation in their valuation of each security.25 An investor's expectation of

the value of debt can be written:

E[DL + q(DH −DL)|si, pD, pE ] = DL + E[Φ(z)|si, pD, pE ]∆D

∆D(F ) ≡ DH(F )−DL(F )

Similarly, an investor's expectation of the value of equity can be written:

EL + E[Φ(z)|si, pD, pE ]∆E(F ) ∆E(F ) ≡ EH(F )− EL(F )

We will refer to ∆D(F ), ∆E(F ) as the information-sensitivity of debt and equity, respectively. In

our setting, information sensitivity measures the change in an investor's expected value of the asset

to changes in his beliefs about q, e.g.,∂E[min(F,x)|]
∂E[q] = ∆D(F ). It is straightforward to show that the

information-sensitivity of any claims issued must equal the information-sensitivity of the underlying

assets, i.e., ∆D(F ) + ∆E(F ) = ∆V . Financial engineering cannot reduce the information sensitivity

of the agent's holdings.

We will conjecture and verify that investors can construct signals, sD and sE , from pD and pE ,

and that these signals will be independent and normally-distributed, conditional upon the true value,

z. Let τD, τE , denote their precisions, respectively, which are determined in equilibrium. As a result,

each investor believes

z|si, sD, sE ∼ N
(
τzµz + τisi + τDsD + τEsE

τz + τi + τD + τE
,

1

τz + τi + τD + τE

)
.

Lemma 1. If z is normally-distributed, then the expectation of q can be written:

E[q] = E[Φ(z)] = Φ

(
E[z]√

1 + V[z]

)
We will be looking for a symmetric equilibrium in which τi = τi,D for all debt investors and τi = τi,E

for all equity investors. Applying Lemma 1, a debt investor observing private signal si believes the

expected value of debt to be

DL(F ) + Φ

(
τzµz + τi,Dsi + τDsD + τEsE√

ψD(1 + ψD)

)
∆D(F ),

25Note that this is in contrast to the agent, for whom the residual variation in each state is a source of disutility.
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whereas the expected value of equity for an equity investor with signal si can be written:

EL(F ) + Φ

(
τzµz + τi,Esi + τDsD + τEsE√

ψE(1 + ψE)

)
∆E(F ),

where ψD ≡ τz + τi,D + τD + τE , and ψE ≡ τz + τi,E + τD + τE .

Lemma 2. If GH �FOSD GL, ∆D, ∆E ≥ 0 for all F ≥ 0. Furthermore, ∂∆D
∂F ≥ 0 ≥ ∂∆E

∂F .

Investors are restricted to purchase no more than 1
mD

(
1
mE

)
units of debt (equity); in combination

with their risk-neutrality, this implies that debt (equity) investors' demand is an element of the set:

{0, 1
mD
}({0, 1

mE
}). Under the assumption of FOSD, the value of each security is increasing in each

investor's conditional expectation of z. Investor beliefs in each market can be ordered by their private

signals, si, and so we posit a threshold strategy: investors purchase 1
mD

(
1
mE

)
units of debt (equity)

if si ≥ xD(z, ud) (si ≥ xE(z, ue)); otherwise, they hold only the risk-free security. The thresholds, xD

and xE , are functions of fundamentals (z) and the realized liquidity shock in each market (ud, ue).

We normalize the supply of each security to one. If we impose market-clearing in the debt market:

1 =
[
1− Φ

(√
τi,D (xD(z, ud)− z)

)]︸ ︷︷ ︸
total demand by debt investors

+ Φ (ud)︸ ︷︷ ︸
liquidity demand

(2)

It is clear from (2) that markets clear if and only if xD(z, ud) = z + ud√
τi,D

. Market clearing in the

equity market yields xE(z, ue) = z+ ue√
τi,E

. Moreover, xD(z, ud), xE(z, ue) summarize the information

contained in prices:

sD = xD(z, ud) = z + ud√
τi,D

; sE = xE(z, ue) = z + ue√
τi,E

(3)

The marginal debt (equity) investor, whose signal si = sD (si = sE) sets the price equal to his

conditional expectation:

pD = DL + qD∆D where qD = Φ

(
τzµz + (τi,D + τnτi,D)sD + τnτi,EsE√

ψD(1 + ψD)

)
(4)

pE = EL + qE∆E where qE = Φ

(
τzµz + τnτi,DsD + (τi,E + τnτi,E)sE√

ψE(1 + ψE)

)
(5)

It is clear from (4) and (5) that prices are invertible; observing pD, pE is equivalent to observing

sD, sE . Furthermore, as (3) makes clear, sD and sE are independent, normally-distributed signals,

conditional on the true value, z. Taken together, this veri�es our conjecture. Note that because

sD 6= sE , the beliefs of the marginal investor in each market are imperfectly correlated.

Proposition 1. There exists a unique equilibrium. Debt investors purchase 1
mD

units of debt if si ≥ sD
and equity investors purchase 1

mE
units of equity if si ≥ sE, where sD and sE are de�ned in (3).

Otherwise, investors hold the risk-free asset. The price of debt, pD, and price of equity, pE , are given

by (4) and (5), respectively.
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We now turn to the agent's beliefs about prices. We will focus on the price of debt; analogous

statements hold with respect to equity. We will refer to the variance of the marginal investor's beliefs

about the expected value of q, that is, V0[qD], as information-driven uncertainty. Note that price uncer-

tainty, V0[pD] = V0[qD]∆D(F )2, is a product of its information-driven uncertainty and its information

sensitivity.

Lemma 3. If τn is su�ciently high and |µz| su�ciently low, ∂V0[qD]
∂τi,D

, ∂V0[qD]
∂τi,E

> 0. Furthermore, when

τi,D > τi,E, V0[q] > V0[qD] > V0[qE ].

Learning by debt investors (↑ τi,D) increases the information-driven uncertainty of debt (V0[qD]).

Moreover, debt investors also condition upon the price of equity � as a result, increased information

acquisition by equity investors (↑ τi,E) has a similar e�ect. Finally, if debt investors acquire more

information than equity investors (τi,D > τi,E), their beliefs about fundamentals are more variable

(V0[qD] > V0[qE ]). Throughout the rest of the paper, we will assume that τn is su�ciently high such

that the inequalities in Lemma 3 hold.26

Lemma 4. If µz = 0, E0[q] = E0[qD] = E0[qE ]. If µz > 0 (µz < 0), then E0[q] > E[qD] (E0[q] <

E[qD]); if, in addition, τi,D > τi,E, E0[qE ] > E[qD] (E0[qE ] < E[qD]) when τn is su�ciently high.

In our model, there is a non-linear relation between investors' information and the fundamental

value of the asset: investors obtain information about z, but form expectations about Φ(z). As em-

phasized in Albagli et al. (2015), this has the potential to generate a wedge between the expected price

paid (qD) and the expected value (q).27 When µz = 0, the value of the asset is a�ected symmetrically

by information about z; information acquisition has no e�ect on the expected price. We discuss the

intuition for Lemma 4 when µz 6= 0 in Appendix B.4.

2.3 Optimal Issuance

In this section, we assume µz = 0, which implies that the agent's objective is to minimize the variance

of his proceeds (since E0[qE ] = E0[qD] = E0[q]). In Appendix B.4, we consider the implications for

optimal issuance in the more general case, µz 6= 0.

If the agent's uncertainty about pD and pE is su�ciently low, he is always better o� selling his

entire claim to the asset at time-0.

Proposition 2. If τ−1
z and τn are su�ciently high, retaining any claim to the asset for sale at time-1

increases the variance of the agent's proceeds.

If the fundamental uncertainty is su�ciently high (↓ τz) and liquidity shocks are su�ciently certain

(↑ τn), the agent prefers not to wait until time-1 to sell the asset. Retaining any portion for sale

at time-1, after the uncertainty about z has resolved, simply increases his uncertainty. We leave for

26While the variance of a given investor's beliefs about z is always increasing in the precision of his information, this
does not necessarily imply that the same must be true with respect to the marginal investor's beliefs about Φ(z). The
su�cient conditions ensure that this is the case.

27The existence of a wedge also requires limits to arbitrage and asymmetric information between investors.
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Section 3 our analysis of how the agent would choose to sell his claim over time, and therefore assume

that the conditions detailed in the proof of Proposition 2 hold. As a result, the agent's objective is to

choose the face value of debt, F ≥ 0, to minimize the variance of his total proceeds, i.e.,

V0[pD + pE ] = ∆D2V0[qD] + ∆E2V0[qE ] + 2∆D∆ECov(qD, qE). (6)

2.3.1 Fixed Precision, Fixed Market

We begin by taking as given the market in which investors trade and the precision of their signals. Let

F ∗ be the optimal face value of debt.

Proposition 3. When the agent chooses F ∗ to minimize (6), there exists a unique ∆D(F ∗) ∀ τi,D, τi,E.
1. The agent issues a more information-sensitive security in the market with less precise informa-

tion, e.g., τi,D > τi,E =⇒ ∆D(F ∗) < ∆E(F ∗)

2. Both securities are information-sensitive when the relative di�erence in investors' information

is su�ciently small , e.g., ↓ |τi,D − τi,E | =⇒ ∆D(F ∗), ∆E(F ∗) > 0

Price uncertainty is driven by (i) information-driven uncertainty (e.g., V0[qD]) and (ii) information

sensitivity. As Lemma 3 makes clear, the relative precision of the information in each market drives the

relative di�erence in their information-driven uncertainty. To minimize his price risk, the agent issues

a more information-sensitive security in the market with less information, that is, the market with less

information-driven uncertainty. Notably, however, the agent doesn't exclusively issue in the market

with the least information. By selling claims in multiple markets, the agent reduces the risk of low

liquidity demand � qD, qE are imperfectly correlated. When this diversi�cation bene�t is su�ciently

large, he issues information-sensitive debt and equity.

2.3.2 Endogenous Information, Fixed Market

We consider now the scenario in which, while restricted to trade in a given market, investors can choose

the precision of their signal. The conditional expectation of Φ(z) of an investor with private signal

precision τi can be written

qi ≡ E[Φ(z)|si, pD, pE ] =
τzµz + τisi + τDsD + τEsE√

ψi(1 + ψi)
,

where ψi ≡ τz + τi + τD + τE . Recall that investors (i) di�er only in their beliefs about z and (ii)

purchase the asset only if their beliefs about z exceed those of the marginal investor. Then the investor's

expected utility from trading debt (EUD) can be written

EUD ≡
∆D

mD
E0 [(qi − qD)|(qi > qD)] (7)

Using similar reasoning, we can write an equity investor's expected value from trading equity:

EUE ≡
∆E

mE
E0 [(qi − qE)|(qi > qE)] (8)
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Proposition 4. If fundamental uncertainty is su�ciently low (τz su�ciently high), an investor's ex-

pected trading gains (EU) are increasing and concave in the precision of the investor's private infor-

mation, τi.

Holding �xed the information acquisition of others, as τi increases, the investor becomes more

(less) likely to purchase the security when it's undervalued (overvalued). Even if an investor were to

learn z perfectly (τi →∞), however, the bene�t is limited: any mispricing is limited to the security's

information sensitivity and an investor's potential holdings are bounded.

Each investor in market j chooses τi to maximize his expected pro�ts, subject to the cost of

information:

EUj − C(τi) j ∈ {D,E} (9)

Corollary 1. Given a face value, F , there is a unique symmetric equilibrium in which τ∗i = τi,D

(τ∗i = τi,E) for all debt (equity) investors. As the face value of debt increases, debt (equity) investors

acquire more (less) precise signals (i.e.,
dτ∗i,D
dF ≥ 0 ≥ dτ∗i,E

dF ). Furthermore,
∂τ∗i,D
∂∆D ,

∂τ∗i,D
∂τz

,
∂τ∗i,E
∂mD

> 0 >
∂τ∗i,D
∂mD

.

Finally, the ability to observe prices in other markets decreases the information acquired.

The optimal precisions solve equations (20) and (21) found in the Appendix. Investors always choose

to acquire private information (i.e., τ∗i 6= 0) when the claim issued in their market is information-

sensitive. Unsurprisingly, given that the expected value is proportional to ∆D
mD

, when investors can

purchase a more information-sensitive security, or acquire a larger position, a more precise signal is

acquired. As Lemma 2 makes clear, as the face value of debt increases, the information-sensitivity

of debt (equity) increases (decreases), which implies that debt (equity) investors acquire more (less)

information. If fundamental uncertainty increases, then investors in both markets acquire more in-

formation. The ability to condition on prices in the other market �crowds out� investors' private

information acquisition. We explore this �nal e�ect in more detail in Section 6.1.

Proposition 5. When investors can choose how much information to acquire, the agent always issues

information-sensitive securities in both markets. Suppose (i) the agent chooses F ∗ to minimize (6)

and (ii) investors choose τ∗i to maximize (9). Then there is a unique, optimal ∆D(F ∗), with τ∗i =

τi,D (τ∗i = τi,E) for all debt (equity) investors:

1. If mD ≤ mE, (i) 0 < ∆D(F ∗) ≤ ∆E(F ∗) (ii) V0[qD] ≥ V0[qE ]

2. If mD ≥ mE, (i)∆D(F ∗) ≥ ∆E(F ∗) > 0 (ii) V0[qD] ≤ V0[qE ]

In a market with fewer investors, each can purchase a larger share of each security; this incentivizes

more information acquisition, increasing the variance of the price. As a result, the agent issues the

more information-sensitive claim to the market with the broader investor base.28 Note, however, that

28Similar results can be generated if the two markets di�er in their information technology. Suppose, for instance,
it is cheaper for debt investors to acquire information � ∂CD(τ)

∂τ
< ∂CE(τ)

∂τ
∀τ . Given the opportunity to purchase a

security with the same information sensitivity, debt investors would acquire a more precise signal than equity investors.
As a result, the agent optimally sets ∆D < ∆E. Note, however, that an important question remains: why do debt
investors have superior information technology if the agent responds in this fashion? If acquiring the superior technology
required some costly, upfront investment, an equilibrium in which only one type of investor makes the investment (so

that ∂CD(τ)
∂τ

6= ∂CE(τ)
∂τ

) may be di�cult to construct.
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the agent continues to balance both sources of uncertainty. For example, when there are more debt

investors (mD > mE), the debt claim is more information-sensitive. However, the optimal face value

encourages equity investors to learn more, so that the information-driven variance of equity (V0[qE ])

is higher.

An information-insensitive security plays no role in the optimal capital structure. Suppose instead

that the agent issued risk-free debt, i.e., ∆D(F ) = 0. While the agent faces no uncertainty about the

price at which he can sell debt, the information-sensitivity of the asset is now concentrated in the equity

market (∆E(F ) = ∆V ). When investors can choose how much information to acquire, this implies that

the agent will face more uncertainty about the marginal equity investor's beliefs (V0[qE ] > V0[qD]).

This is not optimal � it would require the agent to sell the security with more information-sensitivity

in the market with more information-driven uncertainty.

Proposition 6. Aggregate information acquisition (τi,D + τi,E) is minimized when the agent issues an

information-insensitive security in the market with fewer (e.g., mD < mE) investors when C ′′′ ≥ 0

and C′′

C′ > 0 is su�ciently high.

Notably, the optimal capital structure does not necessarily minimize aggregate information ac-

quisition. When the cost function is su�ciently convex, information acquisition is minimized when

information sensitivity is concentrated in one market. However, the optimal capital structure is driven

by the relative information acquired by investors in each market rather than by the aggregate informa-

tion generated. We show in the proof of Proposition 6 that if C(τ) = κτa with κ > 0, a ≥ 2, then the

su�cient conditions are met.

2.3.3 Endogenous Information, Market Entry

Finally, we consider our benchmark model, in which investors can both choose in which market to

invest and choose the precision of their signals. If all investors are able to freely choose in which

market to trade, in equilibrium, ex-ante returns in both markets should be equal: EUD = EUE .

Proposition 7. Expected returns in each market are only equalized if ∆D(F )
m∗D(F ) = ∆E(F )

m∗E(F ) = ∆V .

The intuition for the choice of market entry is clear from equations (7) and (8). Suppose, instead,

that ∆D(F )
αD(F ) > ∆E(F )

αE(F ) . This would lead to more learning by debt investors (τi,D > τi,E), which in

turn implies that EUD > EUE (by Proposition 4). When the returns in each market are equalized

(EUD = EUE) the optimal signal in each market is the the same (τ∗i,E = τ∗i,D) and so, therefore, is the

information-driven uncertainty (V[qD] = V[qE ]). E�ectively, fully �exible market entry exactly undoes

the e�ect of capital structure on information-driven uncertainty.

As we discuss in detail in Section C.2, some capital is unable to move freely between markets.

To capture this friction, we assume that there exists some minimum measure of investors which must

hold only debt (mD,min) or equity (mE,min), while the remaining investors (1 − mD,min − mE,min)

can choose in which market to trade. When 1 − mE,min ≥ m∗D(F ) ≥ mD,min, there are su�cient

unconstrained investors to equalize the expected returns in each market. As a result, the precision is
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�xed for all choices of F , and the agent can only control the information-sensitivity of each security. On

the other hand, consider F su�ciently low such that m∗D(F ) < mD,min. All unconstrained investors

will trade the �rm's equity (mE = 1 −mD,min) and equity investors will acquire more precise signals

(τ∗i,E > τ∗i,D).
29 Furthermore, in this region the measure of investors in each market remains �xed, and

so the agent regains the ability to a�ect how much information is acquired.30

Theorem 1. When investors can choose how much information to acquire, and in which market to

trade, the agent always issues information-sensitive securities in both markets. Suppose (i) the agent

chooses F ∗ to minimize (6) and investors choose (ii) τi to maximize (9) and (iii) the optimal market

in which to trade. Then there is a unique, optimal ∆D(F ∗), with τ∗i = τi,D (τi,E) for all debt (equity)

investors:

1. If mD,min, mE,min ≤ 1
2 , (i)∆D(F ∗) = ∆E(F ∗) (ii) V0[qD] = V0[qE ]

2. If mE,min >
1
2 , (i)∆D(F ∗) < ∆E(F ∗) (ii) V0[qD] > V0[qE ]

3. If mD,min >
1
2 , (i)∆D(F ∗) > ∆E(F ∗) (ii) V0[qD] < V0[qE ]

When investors are su�ciently unconstrained, allowing for market entry can increase the agent's

utility. Suppose that the majority of investors are constrained to trade equity, i.e., mE,min >
1
2 . The

only way for the agent to smooth across both sources of uncertainty is to choose a level of debt such

that (i) all unconstrained investors choose to trade debt, so that V0[qD] > V0[qE ], but with (ii) more

information-insensitivity in the equity claim, ∆E(F ) > ∆D(F ). This is equivalent to the problem

we considered above, in which investors are �xed in each market. On the other hand, when there is

su�cient �exibility in investors' choice of markets (i.e., both mD,min and mE,min are less than 1
2), the

agent can perfectly balance his two sources of risk: ∆D(F ) = ∆E(F ) and V0[qD] = V0[qE ].

2.4 Discussion

Our results stand in contrast to those of Boot and Thakor (1993), which argues that when selling the

�rm, information sensitivity should be concentrated in one security, equity. In their model, the agent

wants to encourage information acquisition so as to increase the price paid. Surprisingly, we show in

the proof of Proposition 6 that aggregate information (τi,E + τi,D) can be maximized in the minimum-

variance capital structure.31 As a result, when markets are segmented, the solution in our setting may

also be the optimal capital structure when the agent wants to encourage information acquisition. We

hope to explore this idea further in future work.

The recent literature on security design (e.g., Yang (2015); Dang et al. (2015)) has focused on the

optimality of debt, due to its relative information-insensitivity. Such securities generally minimize the

frictions generated by information acquisition. In our setting, an agent faces a similar friction but,

importantly, wants to sell his entire claim to the asset. As a result, he must consider the risk of the

entire capital structure, and so an information-insensitive security plays no role in the optimal capital

29This is because the expected return to trading equity will exceed that of debt (EUE > EUD).
30Applying similar reasoning, for all face values of debt such that αD ≥ 1 − αE,min, the measure of debt investors is

�xed: αD = 1− αE,min.
31This is true in case (i) of Theorem 1, or when debt and equity investors exist in equal measure.
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structure.32 This is similar to the result of Farhi and Tirole (2015), who show that by selling an

information-insensitive tranche, a seller may be left with a too-risky claim which he �nds di�cult to

sell.

As the intuition for the results above make clear, the agent generally bene�ts from the ability to

sell in each segmented market to which he has access. It is important to consider, therefore, situations

in which �nancial market segmentation extends beyond debt and equity markets. For instance, bank

loans and publicly-traded debt, by de�nition, are held by di�erent sets of investors. The latter market,

however, is only accessible to �rms which have a credit rating. It is straightforward to show that if the

agent can costlessly borrow in both the bank loan and public debt markets, the �rm will raise more

capital via debt. This is consistent with the results of Faulkender and Petersen (2006), which argues

that, all else equal, �rms with credit ratings typically borrow more.33 Within a given debt market,

many investors face investment restrictions which depend upon a bond's rating.34 At the same time,

issuers of asset-backed securities typically issue bonds with ratings across the spectrum.35 Our model

suggests that one motivation for doing so is that by tapping into distinct markets, issuers lower the

uncertainty they face.36,37

Many debt investors are exogenously restricted to hold securities with su�ciently high ratings.

Insurance companies are restricted to hold debt of su�cient quality and regulation penalizes holding

riskier bonds on bank balance sheets.38 If default risk increases su�ciently, there may only be a

relatively small number of distressed debt investors able to lend capital. In practice, it is generally

observed that debt is less information-sensitive than equity.39 Such restrictions provide one reason

why this might be the case. Suppose that when debt is risk-free, mE = mD: equity and debt investors

exist in equal measure. As the face value of debt rises, the measure of potential debt investors falls

(mD < mE), and so in equilibrium, the agent will set ∆D(F ∗) < ∆E(F ∗). Notably, this implies that

32If it is feasible to sell multiple claims in each market, risk-free debt could be issued as well: such issuance leaves
the agent's utility una�ected. If investors were willing to pay a premium for such securities (for unmodeled reasons), he
could accommodate them.

33Our results are potentially consistent with the analysis of Rauh and Su� (2010). One surprising result they highlight
is that relative to investment-grade �rms, high-yield issuers are more likely to issue to both banks and institutional
lenders. If there is a �xed cost to issuance, �rms with less information sensitivity (low ∆V ) may choose to borrow in
fewer markets; a shock to the expected value of the asset in the low state of the world would lead to (i) downgrade and
(ii) �rms tapping other markets for funding.

34Mutual funds are a prominent example � many funds are categorized by the types of bond in which they can
invest. Cantor, Gwilym, and Thomas (2007) provides evidence that pension plan sponsors place similar restrictions on
investment managers.

35For example, Benmelech and Dlugosz (2009) discuss the construction of CLO's, noting that 40% of the deals issued
a tranche with each of the following ratings: AAA,AA,A,BBB,BB and NR.

36This explanation di�ers from, but is not inconsistent with, an oft-cited explanation: a clientele e�ect, in which
investors demand (and sometimes pay a premium for) bonds with certain (typically, higher) ratings.

37For a given corporation, bond ratings are relatively homogenous; however, it is possible for �rms to issue commercial
paper with a rating which di�ers from its longer-maturity debt. As documented in Lemmon, Liu, Mao, and Nini (2014),
a large number of �rms have securitized their receivables and received an A-1 rating; the �rms which did so typically had
lower ratings, e.g., A or BBB, consistent with our story when credit risk and information sensitivity (∆V ) are positively
correlated.

38Ellul, Jotikasthira, and Lundblad (2011) provide evidence that such restrictions can impact bond prices, for instance,
when there are a limited number of potential buyers for downgraded bonds.

39There are, of course, many exceptions. Information about recovery value or downside risk will generally induce a
larger change in debt, not equity, prices.

16



the agent does not necessarily issue to the broadest investor base � he may be willing to trade-o� a

more concentrated group of capital providers within a market against a higher concentration of risk in

a given security when comparing across markets.

The agent in our model is a stand-in for several possible entities. It could be that, as is commonly

assumed, the agent is an entrepreneur, or a large individual stakeholder in a privately-held �rm. Private

equity �rms prioritize identi�cation of the best �exit strategy,� i.e., the optimal way to liquidate their

position. Moreover, in practice, many private equity �rms issue debt prior to sale and use the proceeds

to pay equityholders � a leveraged recapitalization � which closely corresponds to the setting studied.

Similarly, in structured �nance, special purpose vehicles purchase assets (loans) with the explicit goal

of structuring and selling claims � both debt and equity � to investors. Finally, it is possible to

interpret our model in the context of executive compensation. If a risk-averse CEO is compensated as

a function of the enterprise value of the �rm, then his optimal capital structure will closely match the

structure suggested by our main results.40

There is a growing literature (e.g., Axelson (2007); Dang, Gorton, and Holmström (2012); Yang

(2015)) exploring the impact of buyers' ability to generate private information about an asset for

sale. In our model, this assumption has several interpretations. It could be that, as professional

investors with industry expertise, they have special expertise in determining the likelihood of success.

Alternatively, after the agent has chosen how to sell his asset, it could be that further information

about q becomes available, which investors are able to acquire before submitting their bids.

In Appendix C.1 we (i) consider a setting in which the agent has previously issued debt and/or

equity, (ii) examine the implications of dividend recapitalizations when liquidation is costly, and (iii)

provide an alternative payo� structure in which an increase in z makes �tail� realizations more likely.

3 Dynamic Issuance

When information about the probability of each state is revealed over time, the price of the asset will

vary over time. This provides an incentive for the agent to retain some claim to the asset for sale at a

later date. Retention, in combination with price variation, can help maximize his expectation of and

reduce the uncertainty surrounding his �nal proceeds.

3.1 Time-varying asset value

For the remainder of the paper, we analyze the sale of the asset over multiple periods. We consider a

setting in which there are T + 2 periods, i.e., t ∈ {0, 1, ..., T + 1}.
As before, q ≡ P[s = H], but we now set q = Φ[zT ]. The state variable, zt, is stochastic:

zt+1 = (1− ρ)µz + ρzt + et+1, et+1 ∼ N (0, τ−1
z ),

At time-t, zt is revealed and known by all agents. At T + 1, the true state is resolved. At T + 2, the

40If the compensation is a linear function of the enterprise value, it will match exactly.
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cash �ow is realized.41

Throughout Section 3, we assume that the agent issues equity, only.42 There exists a unit-measure

continuum of investors; in each period, t, investor i observes a private signal si,t = zt+1 + εi,t, with

εi,t ∼ N (0, τ−1
i,t ). 43 We assume that τi,t is always non-zero and �nite.

In each period, investors/traders are limited to purchase κt units, where κt denotes the fraction

of the shares outstanding at time-t. Liquidity shocks, ut, are i.i.d. and normally-distributed, ut ∼
N (0, τ−1

n ). A rational expectations equilibrium exists as established in Section 2; it is straightforward

to show that prices reveal a signal sE,t ∼ N (zt+1, τ
−1
E,t), where τE,t = τnτi,t.

The price at time-t (pE,t) is determined via recursion. At time-T , the expected value of the cash �ow

is pE,T = VL + Φ(zT )∆V . At T − 1, the marginal (price-setting) investor with signal si,T−1 = sE,T−1

sets the price equal to his expectation of pE,T : pE,T−1 = VL + qE,T−1∆V , where

qE,T−1 = Φ

τz[(1− ρ)µz + ρzT−1] + (τi,T−1 + τE,T−1)sE,T−1√
ψET−1(1 + ψET−1)


and ψET−1 = τz + τi,T−1 + τE,T−1.

At T − 2, investors have imperfect information about zT−1 and no information about zT . To �nd

pE,T−2, we �rst take the expectation of qE,T−1 given zT−1 and the information (denoted P) that the
marginal investor's signal must equal the signal contained in the price. To do so, we will utilize a more

general version of Lemma 1.

Lemma 5. Suppose y|I ∼ N (µy, σ
2
y). Then, if a, c are constants, E

[
Φ
(
a+y√
c

)
|I
]

= Φ

(
a+µy√
c+σ2

y

)
.

This allows us to write:44

E[qE,T−1|zT−1,P] = Φ

(1− ρ)µz + ρzT−1√
1 + τ−1

z + ψPT−1

 , (10)

where ψPT−1 ≡
τi,T−1

(
1+τn
τn

)
(ψET−1)

2 . Using iterated expectations, it is clear that pE,T−2 = VL + qE,T−2∆V and

qE,T−2 ≡ E[E[qE,T−1|zT−1,P]|si,T−2 = sE,T−2, sE,T−2, zT−2,P].

We de�ne pE,T−k ≡ VL + qE,T−k∆V ; qE,T−k is fully characterized in equation (25) in the Appendix.

Lemma 6. If E[zT |zT−k] > 0 (E[zT |zT−k] < 0), E[qE,t|zT−k,P] increases (decreases) with t.

For intuition, we can compare (10), the agent's expectation of the price at T −1, to his expectation

of qE,T (the price at time-T ).

41When T = 1 and z0 = µz we return to the original, static setting.
42This is equivalent to assuming that (i) markets are no longer segmented and (ii) liquidity shocks across markets are

perfectly correlated.
43Restricting the signal to condition on the state variable one period ahead ensures that all information sets are

identical at the beginning of each period.
44For brevity, the steps required to reach (10) are relegated to the Appendix.
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E[qE,T |zT−1] = E[Φ(zT )|zT−1] = Φ

(
(1− ρ)µz + ρzT−1√

1 + τ−1
z

)
The additional term, ψPT−1 > 0, in the denominator of equation (10) re�ects the additional variance

generated in the determination of prices. It is the di�erence between the variance of the marginal

investor's beliefs and the variance of a given investor's beliefs.45 Of course, investors also anticipate

this e�ect, and so the price at each point in time accounts for the excess variance generated by trade in

the future. Given the non-linearity in Φ, this implies that the wedge between Φ (E[zT |zT−k]) and the

agent's expectation of the price shrinks as t → T . When E[zT |zT−k] 6= 0, this leads to a predictable

component in the expected path of prices.

Lemma 7. When τn is su�ciently large, and |E[zT |zT−k]| su�ciently small, V[qE,t|zT−k,P] increases

with t.

It is straightforward to read this result as a modi�cation of Lemma 3. First, when τn is su�ciently

large, the variance of the price is less than the variance of the �fundamental�, i.e., the price in the

next period. Intuitively, the agent faces less uncertainty about the price one period ahead than he

does about the price two periods ahead. On the other hand, the variance of prices falls as |E[zT |zT−k]|
increases. As was just discussed, the wedge between prices and Φ (E[zT |zT−k]) shrinks as t → T ;

when|E[zT |zT−k]| is su�ciently high, the latter e�ect outweighs the former.

3.2 Optimal Retention

We now solve for the agent's optimal dynamic retention policy. We use the following notation: at

time-t, the agent chooses to issue 1−αt of his remaining claim. That is, he retains a fraction
∏t
j=0 αj

of the �rm for sale in subsequent periods and sells (1 − αt)
∏t−1
j=0 αj of the �rm at time-t. The agent

can repurchase or short shares, i.e., αt > 1, αt < 0 are feasible choices.

There are three state variables on which the agent conditions: the number of periods remaining

(T − t), the fraction of the �rm remaining to be sold (
∏t−1
j=0 αj), and the current value of the underlying

fundamental process (zt). The agent has mean-variance preferences � to insure that the solution is

dynamically consistent, the objective function at each time-t maximizes his utility over his terminal

wealth:

maxαtE[WT |zt]−
γ

2
V[WT |zt] WT =

T∑
j=0

[
j−1∏
k=0

αk

]
(1− αj)pE,j .

At time-t, the price received for each prior issuance is known. We can rewrite the objective function

to re�ect that the agent's choice a�ects only his future proceeds:

maxαtE[Wt,T |zt]−
γ

2
V[Wt,T |zt] Wt,T =

T∑
j=t

[
j−1∏
k=0

αk

]
(1− αj)pE,j . (11)

45For more detail, see the discussion of Lemma 4 in Appendix B.4.
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We will solve for the optimal retention policy recursively, and de�ne αt(zt,
∏t−1
j=0 αj) as the solution to

equation (11).46

Time-T: The agent sells his remaining stake in its entirety: αT = 0. Because zT is known by all,

the agent and investors share the same expected value for the asset, i.e., there is no price uncertainty.

Furthermore, there remains residual uncertainty regarding the true state of the world (s ∈ {L,H})
and the realization of the cash �ow. Given his risk-aversion, it is always optimal for the agent to sell

any remaining claim.

Time-T-1: We can rewrite the future proceeds from issuance given αT = 0:

WT−1,T =

[
T−2∏
k=0

αk

]
[VL + ∆V ((1− αT−1)qE,T−1 + αT−1qE,T )]

and solve for the optimal retention policy:47

αT−1(zT−1,
T−2∏
k=0

αk) =
ˆχT−1

γ∆V
∏T−2
k=0 αk

+ wT−1

ˆχT−1 ≡
E[qE,T − qE,T−1|zT−1]

V [qE,T − qE,T−1|zT−1]︸ ︷︷ ︸
market−timing

wT−1 =
V[qE,T−1|zT−1]− Cov[qE,T−1, qE,T |zT−1]

V[qE,T−1 − qE,T |zT−1]︸ ︷︷ ︸
variance−minimizing

,

Consider the case when E[qE,T−qE,T−1|zT−1] = 0: then, αT−1 = wT−1 minimizes the variance of fu-

ture proceeds. When there is more uncertainty about future proceeds (V[qE,T |zT−1] > V[qE,T−1|zT−1]),

the agent issues more than he retains (αT−1 < 1
2). As was the case when analyzing the issuance

across debt and equity markets, however, when there is su�cient diversi�cation (V[qE,T−1|zT−1] >

Cov[qE,T−1, qE,T |zT−1]), the agent retains some portion of his claim (αT−1 > 0).

When zT−1 > (ρ− 1)µz, the agent expects prices to increase over time (E[qE,T − qE,T−1|zT−1] > 0)

and so optimally adjusts his retention decision so that he can issue more in the following period

(↑ αT−1); the opposite is true when zT−1 < (ρ − 1)µz. Such price changes are expected, but not

guaranteed: ˆχT−1 captures the risk-return tradeo�. In addition, the magnitude of the adjustment

accounts for the agent's risk-aversion (γ) and the remaining information-sensitivity of his holdings

(∆V
∏T−2
k=0 αk). If either fall, the agent places less emphasis on his desire to reduce uncertainty.

Time-T-2: Given the optimal policy at T − 1, the agent's future proceeds can be written:

WT−2,T =

[
T−3∏
k=0

αk

][
VL + ∆V

[
ˆχT−1∏T−3

k=0 αk
(qE,T − qE,T−1) + (1− αT−2) qE,T−2 + αT−2q

P
E,T−1

]]
qPE,T−1 = (1− wT−1)qE,T−1 + wT−1qE,T

46The solution described below is well-de�ned when
∏t−1
j=0 αj 6= 0, i.e., the agent still owns some share of the �rm.

47In the proof of Theorem 2, we verify that this is the unique, optimal solution.
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The fraction retained by the agent (αT−2) trades o� (i) the price of equity in the current period

(qE,T−2) and (ii) the price of a portfolio (qPE,T−1) of future equity issuance.48 Surprisingly, however,

qPE,T−1 is not the actual, optimal portfolio chosen by the agent but instead represents the minimum-

variance portfolio.

This arises because the expected gains from market-timing at T − 1 (
ˆχT−1∏T−3

k=0 αk
(qE,T − qE,T−1)) are

independent of the retention decision at T −2 (αT−2). Retaining more in the current period makes the

agent's future proceeds riskier. To compensate, he reduces his risk-taking at T − 1, i.e., the market-

timing component of his retention decision (αT−1 − wT−1). This is readily apparent by examination

of the expression for αT−1: the denominator of the market-timing component is
∏T−2
k=0 αk, and so any

change in αT−2 leaves the market-timing component unchanged.

The optimal fraction retained, αT−2, exists and is unique:

αT−2(zT−2,
T−3∏
j=0

αj) =
ˆχT−2

γ∆V
∏T−2
k=0 αk

+ wT−2

ˆχT−2 ≡
E[qPE,T−1 − qE,T−2|zT−2]− cov

(
qPE,T−1 − qE,T−2, ˆχT−1 (qE,T − qE,T−1)

)
V[qPE,T−1 − qE,T−2|zT−2]

wT−2 =
V[qE,T−2|zT−2]− Cov[qPE,T−1, qE,T−2|zT−2]

V[qPE,T−1 − qE,T−2|zT−2]

As above, the fraction retained has two elements: wT−2, which is variance-minimizing, and χT−2,

which adjusts the retention decision for any expected changes in the price. Both terms, however, are

modi�ed to re�ect the dynamic nature of the problem. The variance-minimizing component smooths

across today's price and the variance-minimizing portfolio in the future. It also accounts for the

uncertainty regarding the construction of that portfolio (wT−1 is unknown at T − 2). Due to the

agent's risk-aversion, the market-timing component now accounts for any future market-timing pro-

ceeds. When market-timing proceeds are positively correlated over time, the agent hedges his risk by

reducing how much he retains (issues) to take advantage of expected increases (decreases) in the price.

We can now state the optimal retention decision at any point in time, summarized in the theorem

below.

Theorem 2. At time T − k, given zT−k, and the fraction of the �rm held by the agent,
∏T−k−1
j=0 αj,

the agent optimally retains:

αT−k(zT−k,
T−k−1∏
j=0

αj) =
ˆχT−k

γ∆V
∏T−k−1
k=0 αk

+ wT−k (12)

and his future proceeds can always be written as a linear function of the retention decision:

48The agent chooses, dynamically, how to allocate the sale of his claim across time, creating a �portfolio� of equity
issuance.
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WT−k,T =

[
T−k−1∏
k=0

αk

][
VL + ∆V

(
qE,T−k +

∑k−1
j=1 χT−k+j

(γ∆V )
∏T−k−1
k=0 αk

+ αT−k
(
qPE,T−k+1 − qE,T−k

))]
(13)

where we de�ne wT−k+1, χT−k recursively as follows:

wT−k =
V[qPE,T−k+1|zT−k]− cov

(
qPE,T−k+1, qE,T−k|zT−k

)
V[qPE,T−k+1 − qE,T−k|zT−k]

qPE,T−k+1 = (1− wT−k+1)qE,T−k+1 + wT−k+1q
P
E,T−k+2

ˆχT−k =
E[qPE,T−k+1 − qE,T−k|zT−k]− Cov(qPE,T−k+1 − qE,T−k,

∑k−1
j=1 χT−k+j |zT−k)

V[qE,T − qE,T−1|zT−1]

χT−k = ˆχT−k
(
qPE,T−k+1 − qE,T−k

)
The agent's retention decision can always be broken into two components. The �rst component,

wT−k, is the variance-minimizing fraction retained, given the agent's beliefs about the future variance-

minimizing portfolio. This component does not account for any future market-timing activity; it is

the exact fraction the agent would retain if his expectation of qE,t was constant over all horizons. The

other component of his retention decision,
ˆχT−k

γ∆V
∏T−k−1
k=0 αk

, is how much more or less the agent retains,

given his beliefs about the predictable path of prices, after accounting for how current market-timing

proceeds covary with future market-timing retention decisions. The separability in the two components

arises because future market-timing proceeds are always independent of the agent's retention decision

in the given period.49

3.3 Discussion

By not realizing his gains from trade immediately, i.e., by retaining a share of the �rm, the agent

maximizes his utility. Information about the asset value is revealed over time � investors can only

condition upon a noisy version of the fundamental value (zT ). As a result, prices in each period are

imperfectly correlated: by retaining a claim to the �rm and selling fractions of the asset at di�erent

points in time, the agent can lower the uncertainty he faces with respect to his entire claim.

As the agent's horizon increases, this portfolio e�ect becomes more pronounced, i.e., the bene�ts of

diversi�cation increase. In such cases, retention need not imply that the agent faces lower uncertainty

about future prices, but rather, that he anticipates bene�ting from this portfolio e�ect. Similarly, the

size of the agent's remaining stake determines how willing he is to take advantage of market-timing

opportunities. While still holding a large fraction of the �rm, his uncertainty about future proceeds

lowers how much weight he places on expected price changes. This implies that the agent's trading

activity is less likely to predict future returns when the size of his stake is relatively large.

Finally, we note that in our model, there is an asymmetry in the predictability of returns after a

repurchase versus an issuance. When E[zT |zT−k] > 0, the agent expects prices to increase over time.

In the absence of risk-aversion, this would lead the agent to repurchase shares. When market-timing

49Interestingly, however, the market-timing component is sensitive to past retention decisions, i.e., 1∏T−k−1
k=0

αk
.

22



gains are positive but small, however, they are generally outweighed by the agent's incentive to lower

his uncertainty by issuing in the current period. As a result, while repurchases indicate high expected

future returns, issuance can be followed by price increases as well, making it a noisier signal of the sign

of future returns.

In Appendix C.3, we use the dynamic setting to consider the implications when (i) the agent must

retain a share of the �rm to maintain control rights and (ii) the agent must issue debt and equity

sequentially, instead of simultaneously.

4 Investment

The optimality of debt for raising capital when investors can acquire information has been shown in a

variety of settings.50 In our model, however, the agent must consider how the security he chooses for

�nancing alters the structure of the residual claim he owns and later sells. To capture this tradeo�, we

now assume that the agent must make an investment in order to acquire the asset.

4.1 Two-stage Financing

We return to the time-varying asset of Section 3 but consider issuance in two stages.

At T − k, the agent must invest I dollars to acquire the asset.51 The agent's expected utility from

holding the asset is such that the agent always wants to proceed with the purchase.52,53 The agent has

su�cient liquid assets (e.g., cash) to make the investment, but can also �nance the purchase by issuing

F dollars of debt or by selling (1− α) of his equity.54 He is constrained to raise no more capital than

is necessary to guarantee that the investment is made.55 His choice set, {F (I, c), α(I, c)}, given the

cash contributed (c ≥ 0), can be written:

DL(F (I, c)) ≡ (1− α(I, c))VL ≡ I − c

At T − k + j, j ≥ 1, the agent sells his remaining stake by issuing publicly-traded, subordinated

debt with face value FJ and selling any remaining equity.56,57 For tractability, we assume that debt

50Recent papers include Dang et al. (2012); Yang (2015).
51The analysis which follows holds for any k ≤ T ; we use the notation of Section 3 for consistency.
52While an important factor for real decision making (see Bond, Edmans, and Goldstein (2012) for a recent literature

survey), we abstract away from any feedback e�ects in which the agent learns from the price to determine whether or
not to make the investment.

53Examples include: a novel use for the asset; a private equity �rm which positively alters the distribution of cash �ows
due to industry expertise or improved management; an SPV who can optimally sell structured claims to the underlying
cash �ow in a way which was infeasible for the original owner.

54In Appendix C.3, we allow the agent to raise capital from both markets.
55This restriction could be due to unmodeled moral hazard. In its absence, the agent might want to raise more capital

at T −k, for the reasons analyzed in Section 3. This restriction allows us to focus on how the choice of �nancing interacts
with the later issuance decision.

56An increase in the holding period, j, captures the relative uncertainty faced by the agent at each point in time as
well as the e�ect of intervening trade.

57The assumption of subordination simpli�es the expressions which follow but is not necessary to achieve our main
results.
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and equity investors exist in equal measure and have access to signals with equal precision, that any

equity issued trades in all future periods, that senior debt is privately held and that µz = zT−k = 0.

If the agent chooses to �nance the investment via debt, it will be placed on the balance sheet of

the �rm. If he raises F (I, c) today to purchase the asset, and sells FJ upon acquisition, his proceeds

can be written

EL(F (I, c) + FJ) + qE,T−k+j∆E(F (I, c) + FJ) +DJ(F (I, c), FJ) + qD,T−k+j∆DJ(F (I, c), FJ)

− [I −DL(F (I, c))− qD,T−k∆D(F (I, c))]

Under the assumption that µz = zT−k = 0, E[qE,T−k+j ] = E[qD,T−k+j ] = E[qD,T−k]. As a result, his

expected proceeds are simply the expected value of the asset minus the purchase price: VL+E[q]∆V −I.
For every dollar of debt raised to purchase the asset, the expected value of the agent's residual claim

falls one-for-one: his capital structure decision does not change his expected proceeds from investing

in the asset. Using similar steps, we reach the same conclusion when the agent �nances his investment

via equity. As a result, his objective is to minimize the variance of his proceeds.

As shown in Appendix C.1, the agent chooses FJ such that ∆E∗(F + FJ) = ∆D∗J(F, FJ). If the

agent �nances his investment using debt, ∆E∗(F + FJ) = ∆V−∆D(F (I,c))
2 . As the level of investment

increases, the equity and subordinated debt issued become less information-sensitive. We can write

the variance of the agent's proceeds if he �nances via debt as

V[P |Debt] =

[
∆V −∆D(F (I, c))

2

]2
V[qE,T−k+j + qD,T−k+j ] +

[
∆D(F (I, c))

2

]2
V[2qD,T−k]

+2

[
(∆V −∆D(F (I, c))

2

] [
∆D(F (I, c))

2

]
Cov(2qD,T−k, qE,T−k+j + qD,T−k+j).

If he �nances his investment through the issuance of equity, his choice of FJ will set ∆E∗(F+FJ) = ∆V
2 .

Equity investors at T−k anticipate receiving the proceeds of the debt issued at T−k+j and submit their

demand accordingly. As a result, pE,T−k = VL+(qE,T−k+ q̂J)∆V
2 , where q̂J = E[qD,T−k+j |sE,T−k, si =

sE,T−k]. The variance of the agent's proceeds if he �nances via equity can be written

V[P |Equity] =

[
∆V

2

]2 [
(1− α(I, c))2V[qE,T−k+j + qD,T−k+j ] + α(I, c)2V[qE,T−k + q̂J ]

]
+2

[
∆V

2

]2
α(1− α)Cov(qE,T−k + q̂J , qE,T−k+j + qD,T−k+j)

Proposition 8. The agent �nances his investment via equity if I ≤ I; it is �nanced via debt if I ≥ Ī.
When �nancing via debt, the agent supplies no cash (c = 0) when I ≤ ID; when �nancing via equity,

the agent supplies no cash when I ≤ IE.

The thresholds I, Ī, ID, IE are described in the proof.

When the level of investment is su�ciently low, the information-insensitivity of debt makes it

suboptimal for raising capital. For intuition, consider a value of investment su�ciently low so that
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∆DL(F (I, c)) = 0. If he �nances via debt, the variance of his proceeds reduces to
[

∆V
2

]2 V[qE,T−k+j +

qJ ]. On the other hand, any equity sold at time T − k must be information-sensitive � moreover,

becauseV[qE,T−k + q̂J ] < V[qE,T−k+j + qJ ], it is clear that equity is the preferred form of issuance.

Using equity allows the agent to sell some of his information-sensitive claims at an earlier date when

the information-driven uncertainty is lower. Even though the debt is information-insensitive, which in

other settings makes it optimal for raising capital, it leaves a maximally-sensitive residual for sale at a

later date, rendering it suboptimal.

As the level of investment increases, the agent must also consider the relative information-driven

uncertainty across markets. As we show in Appendix C.3, an investor's expectation of future prices is

more responsive to his information than his expectation of the current price.58 As a result, V[qE,T−k +

q̂J ] > V[2qD,T−k], and Cov(qE,T−k + q̂J , qE,T−k+j + qD,T−k+j) > Cov(2qD,T−k, qE,T−k+j + qD,T−k+j).

For low levels of investment, when issuance at T−k has very little information-sensitivity, this di�erence

is irrelevant. As both I and the information-sensitivity of �nancing increases, however, this di�erence

in information-driven uncertainty eventually makes equity issuance suboptimal.

If cash is used to o�set the cost of the investment, it reduces the information-sensitivity of any

securities used for �nancing. As argued above, when the level of investment is low, the securities used

for �nancing are insu�ciently information-sensitive, given that information-driven uncertainty at T−k
is lower than that of issuance j periods later. As a result, when I is low, the investment is �nanced

entirely via capital markets. Increasing the investment level allows the agent to better balance his

sources of risk. When I = ID, the agent can perfectly smooth his uncertainty over time. As a result,

for all I > ID, the agent uses cash to reduce investment at a one-for-one rate so that his optimal level

of �nancing is preserved.

4.2 Discussion

In our setting, the pecking order of Myers and Majluf (1984) is e�ectively �ipped. For low levels of

investment, the agent uses equity. He switches to using debt only when the level of investment becomes

so large that issuing equity is too costly. Finally, his liquid assets are only used for very high levels of

investment, and interestingly, only used in combination with either debt or equity.

Note that the mechanism which generates this reversal is not that investors, instead of the agent,

possess private information. In fact, if after raising capital for investment, the agent could risklessly

sell his remaining claims to the �rm, the pecking order would be restored.59 In that case, the agent's

objective would be to minimize the variance of his �nancing proceedings � which, as argued above,

could be done via internal capital, and if necessary, debt. Our results are driven by a novel channel:

the agent's desire to smooth his sources of uncertainty across markets and over time. Interestingly,

and in contrast to many other papers in the literature, the agent is not �nancially constrained; he has

su�cient liquid assets to make the investment but optimally chooses to o�oad some of his risk through

58When investors take expectations of future prices, they no longer need to account for the increased variance generated
by trade in each period. As a result, their private information is more valuable in predicting the future price.

59For instance, if investors were unable to obtain any further information about zT , the agent and investors would
share a common valuation, allowing him to sell his remaining claim risklessly.
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�nancing.

The empirical literature contains a number of purported violations of the pecking order. For exam-

ple, Frank and Goyal (2003) and Fama and French (2005) �nd that equity issuance, especially among

small, young, and high-growth �rms, which are more likely to be subject to information asymmetry,

is common. Such issuance, however, is potentially consistent with the predictions of our model. First,

small and young �rms are more likely to still be owned by a small group of individuals for whom such

issuance is of �rst-order importance, given its relative weight in their overall asset portfolio.60 Second,

when a small, young �rm is raising capital from professional investors, it is likely that the investors

possess superior information about the �rm's prospects � an oft-cited advantage of venture capital

�rms. As a result, when the agent retains a residual claim in the �rm, he may �nd it optimal to sell

more, rather than less, risky securities today.

In Appendix C.3, we allow the agent to issue both equity and debt to �nance his investment. In

this case, we show that when the level of investment is su�ciently high, the agent never chooses to

�nance his investment by accessing a single market (i.e., he issues debt and equity) This is due to his

incentive to smooth his uncertainty across markets at a given point in time. Taken in combination

with the result above implies that, in the setting considered, we should not expect the agent to rely

solely on debt to �nance his investments.

5 Adverse Selection

The literature on adverse selection and issuance (e.g., Leland and Pyle (1977)) has generally focused

on settings in which the owner of an asset with private information can send a positive signal about

the asset's value through retention. Such models have generally assumed that the owner knows, with

certainty, the price he will receive for each claim he sells. In our model, however, because investors

also have private information, the price received by the agent is uncertain. As a result, he generally

chooses to retain a share of his claim absent the e�ects of adverse selection. To understand the impact

of such retention on the possible signaling equilibria, we now relax the assumption that the agent and

investors begin with the same information set and endow the agent with private information about the

underlying cash �ows.

5.1 Setup

We adopt the time-varying asset value framework from Section 3, with one modi�cation: in the low

state, the asset pays x + y, where it is known by all agents that y ∈ [yL, yH ] ≡ Y.61 Moreover, we

restrict the distribution of cash �ows so that (i) GH(0) = GL(0) = 0, (ii) GL(x − yH) ≥ GH(x), (iii)

if GL(x′ − yH) > GH(x′) then ∀x s.t. x′ ≤ x < inf{x : GH(x) = 1}, GL(x′ − yH) > GH(x′), (iv)

60If the �rm is owned by diversi�ed investors, the uncertainty generated by issuance would be a second-order concern.
61One way to interpret this assumption is that while investors might be able to acquire information about the likelihood

of each state of the world (perhaps due to their valuation expertise), the agent better understands the cash �ow generation
of the asset, conditional upon the state.
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∃x̄ s.t. ∀x ≥ x̄, and ∀y ∈ Y, gL(x− y) < gH(x).62

The expected value of debt and equity in the low state, conditional upon both y and F , are now

DL(y, F ) ≡
∫∞

0 min(F, x+ y) dGL(x) and EL(y, F ) ≡
∫∞
F−y(x+ y−F ) dGL(x). While the information

sensitivity of debt is still increasing in the face value of debt issued (and the sensitivity of equity is

still falling in F ), because the expected value of debt and equity are both increasing in y:

∂DL(y, F )

∂y
= GL(F − y)

∂EL(y, F )

∂y
= 1−GL(F − y),

the information sensitivity of both debt and equity fall with y (i.e., ∂∆D(y,F )
∂y , ∂∆E(y,F )

∂y < 0). An

increase in y is unambiguously valuable to the agent: the expected value of the asset increases, whereas

the asset's information sensitivity falls (∂∆V (y)
∂y < 0).

At T − k, the agent knows y perfectly but cannot credibly convey this information to investors.

Investors can observe y at T . The agent can signal his type (y) through his choice of capital structure.

To facilitate comparison to the existing literature, we adopt the framework of DeMarzo (2005): the

agent sells debt at T − k, and retains the equity for sale at T . If investors believe the agent is of type

ŷ but is really of type y, his proceeds can be written

P (y, ŷ, F ) = DL(ŷ, F ) + qD,T−k∆D(ŷ, F ) + EL(y, F ) + qE,T∆E(y, F ),

allowing us to write his expected utility as U(y, ŷ, F ) = E[P (y, ŷ, F )] − γ
2V[P (y, ŷ, F )]. We will show

the existence of and solve for incentive-compatible separating equilibria in which there is a one-to-one

mapping from y to F . As in Section 3, we assume that the agent takes as given the precision of the

signals received by investors at T − k.63

5.2 Known Debt Price (qD,T−k)

We begin by assuming that qD is known before F is chosen. The agent forms expectations about the

price of equity using qD: in general, qD 6= E[qE.T |qD,T−k], as in Proposition 6. This closely corresponds

to the setting studied by Leland and Pyle (1977) and DeMarzo (2005) � the price at which the agent

can issue today is known and retention of any residual claim generates disutility for the agent.

Suppose qD,T−k ≥ E[qE.T |qD,T−k]. In the absence of adverse selection, i.e., if the agent could

credibly convey his type to investors, he would sell his entire claim as a passthrough (F ∗(y) = F̄ ): he

expects to get a higher price issuing at T − k, and retention only serves to increase the uncertainty of

his proceeds.

On the other hand, suppose qD,T−k < E[qE,T |qD,T−k]. Retaining some portion of his claim allows

the agent to reap the a higher price, in expectation, for the information-sensitive portion of his cash

�ows. Though the agent is risk-averse, there exists some level of risk he is willing to take in order to

engage in an activity � retention � with a positive expected return. Moreover, the agent directly

62Assumption (i) simpli�es the expressions below; (ii) is equivalent to FOSD, after accounting for y; (iii) and (iv)
insure that there exists a unique solution to the agent's problem.

63This ensures the existence of a di�erentiable, incentive-compatible solution to the agent's problem.
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controls how much risk he takes through his choice of F . As a result, in the absence of adverse selec-

tion, there always exists a �nite F ∗(y) which maximizes the agent's utility and satis�es the following

equation:

E[qE,T |qD,T−k]− qD,T−k
γV[qE,T |qD,T−k]

= ∆E(y, F ∗(y)). (14)

The left-hand side of (14) is the risk-return tradeo� to retaining any equity for sale at time-T ; it

determines the optimal level of information-sensitivity retained by agents. Notably, ∆E(y, F ∗(y)) is

constant for all investors, and so given F ∗(yL), it must be that64:

∂F ∗(y)

∂y
=

1−GL(F ∗(y)− y)

GH(F ∗(y))−GL(F ∗(y)− y)

It is clear that ∂F ∗(y)
∂y < 0 for all values of y: in the absence of adverse selection, higher types retain

a larger share of their claim for sale at a later date. Increasing y reduces the information-sensitivity

of equity � thus, the higher the type, the more the agent must decrease how much debt he issues to

preserve the desired variance of his residual (equity) cash �ows.

When y is private information, the agent can signal his type through his choice of debt issuance.

Let f(y) be the proposed issuance schedule. We will solve for separating equilibria in which the agent's

information is fully revealed, i.e., f(y) must be one-to-one, so that ∀ y′ 6= y, f(y′) 6= f(y). Furthermore,

the issuance schedule must be incentive-compatible:

f(y) ∈ arg maxF∈f(Y)U(y, f−1(F ), F ) (15)

If f(y) is di�erentiable, then incentive-compatibility implies that

∂f(y)

∂y
=
−∂U(y,ŷ=y,F=f(y))

∂ŷ

∂U(y,ŷ=y,F=f(y))
∂F

Proposition 9. There always exists a separating equilibrium described by the di�erential equation,
∂f(y)
∂y , de�ned in (27) in the proof.

1. If qD,T−k ≥ E[qE.T−k+j |qD,T−k], f(yL) = F̄ , and ∂f(y)
∂y < 0 (i.e., higher types signal through

more retention).

2. If qD,T−k < E[qE.T−k+j |qD,T−k], f(yL) = F ∗(yL) and there always exists an equilibrium in which
∂f(y)
∂y > 0 (i.e., higher types signal through more issuance).

It is always the case that ∂U(y,ŷ=y,F=f(y))
∂ŷ > 0 � the agent's utility is increasing in investors' beliefs

about his type. As a result, whether the agent signals via retention (∂f(y)
∂y < 0) or issuance (∂f(y)

∂y > 0)

is determined by the sign of ∂U(y,ŷ=y,F=f(y))
∂F , i.e., whether or not issuing more debt would be bene�cial

to the agent along the equilibrium path.

64This is shown formally in the proof of Proposition 9.

28



When qD,T−k ≥ E[qE.T−k+j |qD,T−k], raising the face value of debt always increases the agent's

utility. As a result, ∂f(y)
∂y must be negative: increased retention signals to investors that the agent is

a higher type. The signal is credible because the agent is (i) passing up the opportunity to sell for a

higher price and (ii) holding onto a risky asset.

On the other hand, when qD,T−k < E[qE.T−k+j |qD,T−k] the e�ect of increased debt issuance on the

agent's utility is non-monotonic. If f(y) exceeds F ∗(y), then the agent's marginal utility from issuing

debt is negative (∂U(y,ŷ=y,F=f(y))
∂F < 0). The marginal reduction in uncertainty (by issuing at a known

price) is exceeded by the lost opportunity to issue in the future at what is expected to be a higher

price. If we conjecture an equilibrium in which higher types issue more debt (∂f(y)
∂y > 0), then because

f(yL) = F ∗(yL) and ∂F ∗(y)
∂y < 0, it is clear that f(y) exceeds F ∗(y). Along the equilibrium path, the

agent issues more debt than is desired, verifying our conjecture: ∂U(y,ŷ=y,F=f(y))
∂F < 0 =⇒ ∂f(y)

∂y > 0.

Higher types issue more debt in equilibrium, taking on lower risk but receiving a lower price for doing

so.

5.3 Unknown Debt Price (qD,T−k)

We return now to our benchmark setting in which qD,T−k is unknown before F is chosen. We assume

that µz = zT−k = 0, so that E[qD,T−k|zT−k] = E[qE,T |zT−k], i.e., there is no market-timing incentive

and the agent's objective is to minimize the uncertainty of his proceeds.

Proposition 7 tell us that V[qD,T−k|zT−k] < V[qE,T |zT−k]: there is more information-driven uncer-

tainty surrounding equity issuance, as it occurs further into the future. To smooth across his sources of

uncertainty, the agent optimally issues debt which is more information-sensitive. As in Proposition 3,

the agent only issues information-sensitive securities in both markets when the diversi�cation bene�t

is su�ciently large.

If V[qD,T−k|zT−k] ≤ Cov(qD,T−k, qE,T |zT−k), the lower variance of issuing debt outweighs the diver-
si�cation bene�t of issuing equity.65 If y were publicly known, the agent would choose to sell his entire

claim as a passthrough (F ∗ = F̄ ). On the other hand, when V[qD,T−k|zT−k] > Cov(qD,T−k, qE,T |zT−k),
the agent optimally smooths across both sources of uncertainty by issuing both debt and equity. In

this case, in the absence of adverse selection, there exists a �nite face value of debt, F ∗(y), which

maximizes the agent's utility and satis�es the following equation:

∆E(y, F ∗(y))

∆D(y, F ∗(y))
=

V[qD,T−k|zT−k]− Cov(qD,T−k, qE,T |zT−k)
V[qE,T |zT−k]− Cov(qD,T−k, qE,T |zT−k)

(16)

∆E(y,F ∗(y))
∆D(y,F ∗(y)) is constant for all investors. Given F ∗(yL), this implies that66:

∂F ∗(y)

∂y
=

∆D(y,F ∗(y))
∆V (y) −GL(F ∗(y)− y)

GH(F ∗(y))−GL(F ∗(y)− y)
.

65Note that this is more likely to be true the longer the agent must wait to sell his equity (i.e., as k ↑).
66This is shown in the proof of Proposition 10.
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Unlike the setting above, ∂F
∗(y)
∂y may be non-monotonic. As y increases, the information-sensitivity of

both debt and equity fall, though not necessarily proportionally. Preserving the optimal ratio requires

the agent to account for the relative sensitivity of each security and adjust for any over-/under-response

by altering his debt issuance. For low levels of debt, such that ∆D(y,F ∗(y))
∆V (y) < GH(F ∗(y)), the agent

optimally increases his debt issuance at a more than one-to-one ratio (∂F
∗(y)
∂y > 1). On the other hand,

if the debt is su�ciently risky, such that ∆D(y,F ∗(y))
∆V (y) > GL(F ∗(y)− y), then the agent optimally issues

less debt (∂F
∗(y)
∂y < 0).

As above, we now derive the separating equilibria, f(y), when the agent's type is private informa-

tion.

Proposition 10. There always exists a separating equilibrium described by the di�erential equation,
∂f(y)
∂y , found in (28) in the proof.

1. If V[qD,T−k|zT−k] ≤ Cov(qD,T−k, qE,T |zT−k), f(yL) = F̄ , and ∂f(y)
∂y < 0 (i.e., higher types signal

through more retention).

2. If V[qD,T−k|zT−k] > Cov(qD,T−k, qE,T |zT−k), f(yL) = F ∗(yL) and if ∂f(y)
∂y > ∂F ∗

∂y , there exists

an equilibrium in which ∂f(y)
∂y > 0 (i.e., higher types signal through more issuance).

Again, it is always the case that ∂U(y,ŷ=y,F=f(y))
∂ŷ > 0 and so it is the sign of ∂U(y,ŷ=y,F=f(y))

∂F which

determines whether the agent signals via retention (∂f(y)
∂y < 0) or issuance (∂f(y)

∂y > 0).

When V[qD,T−k|zT−k] ≤ Cov(qD,T−k, qE,T |zT−k), raising the face value of debt always increases

the agent's utility. As when qD,T−k ≥ E[qE.T−k+j |qD,T−k], this implies that ∂f(y)
∂y is always negative.

Increased retention is an e�ective, costly signal because any retention increases the uncertainty of the

agent's proceeds.

When some diversi�cation bene�t exists, that is, V[qD,T−k|zT−k] > Cov(qD,T−k, qE,T |zT−k), the
e�ect of increased debt issuance can be negative. When f(y) exceeds the solution to (16), then the

agent is issuing more debt than he would have otherwise, leading to more variance in his debt proceeds.

As before, we can conjecture an equilibrium in which good types issue more debt (∂f(y)
∂y > 0). If ∂F

∗(y)
∂y

is negative, or if ∂f(y)
∂y > ∂F ∗(y)

∂y > 0, then, following the same reasoning as above, it must be that
∂f(y)
∂y > 0, that is, good types issue more debt in equilibrium.67 By issuing more today, high types take

on excess risk, credibly signaling their type.

5.4 Discussion

We �nd that agent retention, as in Leland and Pyle (1977), can serve as a signal of higher-quality

or lower-quality �rms, depending upon the conditions. Speci�cally, the latter scenario can arise when

issuance is costly. For example, we show that when the price of equity (sold at T ) is expected to

exceed that of debt (sold at T − k), issuance is a credible signal because the agent is forgoing higher

expected proceeds. Alternatively, when equity retention allows the agent to smooth across his sources

67 ∂F
∗(y)
∂y

< 0 when the expectation of the cash �ows in both the low and high state becomes su�ciently similar. By
the same reasoning, it is su�ciently ��at� under similar conditions.
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of issuance uncertainty, as in Section 3, excess debt issuance can be costly because the agent takes on

excess risk.68

Note that, in the absence of adverse selection, we �nd equilibria in which higher types choose to

retain larger shares of the asset. Thus, adverse selection need not imply retention by higher types, and

moreover, retention by higher types need not imply the presence of adverse selection.

The standard result, that higher types retain larger claims, can be recovered in our model. For

instance, if agents of every type would choose to sell their entire claim today in the absence of adverse

selection, this is the only possible separating equilibrium. This setting closely matches that analyzed

by much of the the adverse selection and capital structure literature (e.g., Leland and Pyle (1977);

DeMarzo (2005)). Under these conditions, the only direction in which agents can signal their type is

through retention. We show that when immediate issuance is no longer the dominant action for all

types, we can reverse the direction of the possible signaling equilibria.

6 Cross-Market Learning

We have assumed throughout the paper that investors in one market are able to condition on the

realized price of the security issued in the other market (i.e., cross-market learning). While cross-

market learning increases uncertainty (investors can observe an additional public signal), it also reduces

the information acquired by investors. In what follows, we consider under what conditions the latter

dominates the former, and the relationship between liquidity and uncertainty.

6.1 Issuance Transparency and Cross-market Learning

We return to the static issuance setting found in Section 2. For simplicity, suppose investors exist

in equal measure in both markets, and let τi,CM represent the optimal precision chosen with cross-

market learning.69 Then we can write the optimal precision chosen without cross-market-learning as

τi,CM + τ+, where τ+ represents the additional precision chosen by investors, given their inability to

observe the price in the other market.70 With or without cross-market learning, the optimal capital

structure in both scenarios sets ∆D = ∆E. As a result, the di�erence in the agent's utility is driven

by the variance of qE + qD.

Proposition 11. If τ+ > τn
(1+τn)τi,CM and τz is su�ciently low, then the agent's utility is higher (i.e.,

the variance of his proceeds is lower) with cross-market learning.

68This result bears similarities to Williams (2015), in which higher types can signal through issuance in more, not less
liquid markets. In his model, however, this result arises only when liquidity is paired with retention in a multidimensional
signaling framework.

69While investors are often able to express their demand conditional upon the price of the security they purchase, a limit
order which conditions upon another security's price is not commonly observed. One interpretation of such observation
is that, during the book-building process, the agent (or investment bank organizing the issuance) is transparent about
the interest in the other market.

70As noted in Corollary 1, the ability to condition on prices in other markets decreases information acquisition due to
substitutability in information.
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Cross-market learning generates two countervailing e�ects. Holding precisions �xed, Lemma 3

states that the price volatility rises with cross-market learning. By increasing the information available

to investors, cross-market learning increases the uncertainty faced by the agent at issuance. On the

other hand, as Proposition 4 makes clear, the availability of a free, public signal induces investors to

endogenously acquire less information, lowering the volatility. When the latter e�ect is su�ciently large

(τ+ > τn
(1+τn)τi,CM ), the variance of each security (V[qD] = V[qE ]) falls with cross-market learning.

Whether cross-market learning is optimal, however, also depends upon Cov(qD, qE), and therefore

the correlation between qE , qD. Consider the situation when one market is issued an information-

insensitive security (e.g., ∆D = 0). With cross-market learning, the marginal investors in each market

are conditioning on a single signal. In the absence of cross-market learning, the beliefs in each market

would be uncorrelated � in the information-insensitive market, the marginal investor acquires no

information, and therefore his beliefs are constant.

As the information-sensitivity in each market equalizes (e.g., as ∆D → ∆E), the correlations

with and without cross-market learning move in opposite directions. With cross-market learning, the

marginal investor in each market conditions on the price in the other market, but the relative weight

each investor places on each signal di�ers.71 As a result, the correlation in their beliefs falls. In the

absence of cross-market learning, investor beliefs become increasingly correlated as ∆D → ∆E. The

signals in each market condition on the same random variable, z; as information acquisition in each

market becomes more similar, the correlation of beliefs increases through this signal. For this e�ect to

be relevant, however, the prior beliefs must be su�ciently uncertain, i.e., τz must be su�ciently low,

so that the correlation is su�ciently sensitive to the signals acquired.72

6.2 Bank Loans and Private Equity: E�ects of Illiquidity

Bank loans and private equity di�er in many ways from their public, traded counterparts. For one, trade

in these securities is typically less frequent, if possible at all. Further, as holders of private securities,

banks and private equity investors may have access to information which would be unavailable to

holders of public securities.

To understand the impact of these features, we return to the setting of Section 3. As in Section 3,

we assume the investor can only issue equity, but now assume that it is privately held. For simplicity,

we consider the implications of �perfect� illiquidity, i.e., investors are unable to trade their equity until

time-T . At T − k, rather than taking an expectation of the price at T − k + 1, investors take an

expectation of the price at T . We can write the marginal investor's expectation of q :

qPE,T−k = Φ

(
E[zT |zT−k, si = sp, sp]√

1 + V[zT |zT−k, si = sp, sp]

)
.

71When ∆D = 0, investors in both markets update using only the price of equity. As ∆D grows, the marginal debt
investor places more (relative) weight on sD whereas the equity investor places more weight on sE . This gap is maximized
when ∆D = ∆E.

72When τz is high, even as the correlation falls, the variation in the beliefs in the two markets remains low.
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Holders of private securities also often have access to information public investors do not: manage-

rial forecasts, forthcoming product developments, etc. We capture this bene�t by assuming that the

information they receive allows them to be more forward-looking, i.e., able to obtain signals about the

realization of z multiple (l ≥ 1) periods in the future. Let each investor's private signal be written

si,T−k = zT−k+l + εi, where l ≥ 1 and εi ∼ N
(

0,
(
τ Ii,T−k

)−1
)
. For tractability, we assume that the

precision of investors' private signals is the same in both the public and private market, and constant

over time.

Lemma 8. Illiquidity generates increased uncertainty: (1)V[qPE,T−k|zT−k] > V[qE,T−k|zT−k] ∀l ≥
1, k ≥ 2 and (2) V[qPE,T−k|zT−k] is increasing when investors obtain more forward-looking information

(↑ l), when |E[zT |zT−k]| is su�ciently low.

Because the security does not trade in the intervening periods, private equity investors are better

able to forecast the price at which they can liquidate their position. This increases the agent's uncer-

tainty about the price he will receive, given su�cient information acquisition.73 This e�ect is ampli�ed

by investors' ability to acquire more forward-looking information. In a static setting, the use of illiquid

securities such as bank debt and private equity may be limited � the agent would prefer to issue their

publicly-traded counterparts, as they generally lower the uncertainty of his proceeds.74

If the agent could issue over multiple periods, however, this illiquidity could be valuable.75 Within

a given market, if previously issued securities aren't traded, the information investors acquire today

is only valuable when considering new holdings, which lowers their incentive to acquire information.

As a result, it may be valuable to issue private equity or a bank loan earlier in a �rm's life-cycle. We

explore this setting in Appendix C.3.

We consider, now, an example which highlights the cross-market e�ects of illiquidity. Consider the

case when the agent is restricted to issuing no more than Fmax in debt markets � due, perhaps, to

unmodeled costs of �nancial distress or leverage restrictions required by potential lenders. To highlight

the mechanism of interest, we assume that he borrows the entire amount at time-0 � this is optimal

when Fmax is su�ciently low, as discussed in Section 4. For simplicity, we assume that T = 2. The

agent can choose what fraction of his equity to issue in the two subsequent periods and at time-0, he

can choose to issue either a bank loan or borrow from the public debt market.

As in our dynamic model, the agent sells his remaining equity at time-2 (α2 = 0). At time-1, he

optimally retains the fraction α1(z1, α0) speci�ed in equation (33).76 If the agent issued a bank loan

at time-0, and the bank loan is illiquid, then investors at time-1 can only condition upon their own

signal and the price of equity. This a�ects V[qE,1|z1] in two ways: it induces equity investors to learn

73It is a su�cient, not necessary, condition that τ Ii,T−k = τi, for V[qPE,T−k|zT−k] > V[qE,T−k|zT−k].
74If (1− ρ)µz

∑k
j=1 ρ

(j−1) + ρk−1zT−k 6= 0 , the non-linearity in Φ alters the agent's expected proceeds, as in Lemma
6. The illiquidity of private equity reduces the variance of the price at which investors expect to liquidate their positions,
relative to publicly-traded equity, which reduces both the premium (discount) when (1 − ρ)µz

∑k
j=1 ρ

(j−1) + ρk−1zT−k
is negative (positive). As in Appendix B.4, if the reduction in the discount is su�ciently large, it could compensate for
the additional uncertainty, making private equity desirable in a static setting.

75This discussion ignores the potential costs of illiquidity to the investor. In a richer model, such considerations would
be an important input in determining the optimal capital structure.

76Because we assume the agent can't issue equity at time-2, α0 = 1.
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more, but it eliminates a source of uncertainty, the price of debt at time-1. As in Section 6.1, let

τ+represent the additional precision chosen by equity investors when they're unable to condition upon

the price of debt. If τ+ is su�ciently small, both V[qE,1|z1] and cov(qE,1, qE,2|z1) fall. When this is the

case, issuing a bank loan at time-0 instead of a traded bond lowers the variance of the agent's equity

proceeds at time-1. As a result, even when the proceeds from issuing a bank loan at time-0 are more

uncertain, the loan may still be preferable.

More generally, when the investor anticipates signi�cant future issuance, he may �nd it optimal

to issue a less-liquid, more-variable security today. While we have emphasized the di�erence between

public and private issuance, it is worth noting that equity market liquidity greatly exceeds that found

in bond markets. This variation in liquidity, in combination with cross-market learning, may generate

a preference for equity or debt issuance which depends upon the expectation of future issuance and

investors' ability to acquire information.

7 Conclusions

When deciding how to sell his claim to a risky asset, a risk-averse agent must account for the private

information held by potential investors. We show how the precision of this information can vary (i)

endogenously in response to the securities the agent chooses to sell (ii) and as information about the

fundamental value of the asset is revealed. As a result, the agent optimally liquidates his position

by selling information-sensitive claims across markets and over time. Issuing information-insensitive

securities leaves the agent with excessively risky claims to sell in other markets and at later dates, and

so play no role in the optimal capital structure. Surprisingly, we show that the agent can use increased

issuance as a signal of better private information, and demonstrate that selling illiquid claims can make

future issuance less risky.

We conclude by discussing several potentially fruitful directions for future research:

• Learning along multiple dimensions: In our model, debt and equity investors generally di�er

in how much information they choose to acquire. However, in practice, debt and equity investors

may also di�er in what type of information they choose to acquire. For example, in a setting with

multiple shocks, debt investors may choose to allocate more resources to learning about shocks

which a�ect those states of the world in which the �rm is more likely to default.

• Asset pricing: As the analysis makes clear, security prices can be driven by information acquired

by investors across markets, not just by the investors holding the security. Our model provides

a tractable framework for studying how the market value of a �rm, as well as the volatility and

correlation of the securities within its capital structure, vary with the �rm's �nancing decisions.

• Encouraging information acquisition: We consider a setting in which information acquisition

by investors generates disutility for the agent. This may not always be the case. For instance, if

the investor used the information in prices to make investment decisions, he may want to structure
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his claims to incentivize information acquisition. While our results suggest that the minimum-

variance capital structure does not minimize information acquisition, it would be interesting to

analyze the robustness of these results in a richer setting.
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A Proofs

Proof of Lemma 1. Let v and z be normally-distributed random variables: v ∼ N (µv, σ
2
v) and z ∼ N (µz, σ

2
z). Then

Φ

(
µz − µv√
σ2
z + σ2

v

)
= P[v < z] = E

[
P[v < z | z] | z ∼ N (µz, σ

2
z)
]

= E
[
Φ

(
z − µv
σv

)
| z ∼ N (µz, σ

2
z)

]
Substituting µv = 0 and σv = 1, this implies that

E
[
Φ (z) | z ∼ N (µz, σ

2
z)
]

= Φ

(
µz√
σ2
z + 1

)

Proof of Lemma 2. Given any face value of debt, F , the payo� to both debt (min(F,max(0, x))) and equity (min(0, x−
F )) are weakly increasing in the cash �ow, x. Moreover, both securities are piecewise di�erentiable with respect to x. As
a result, as was �rst shown by Rothschild and Stiglitz (1970), the assumption of �rst-order stochastic dominance implies
that DH ≥ DL and EH ≥ EL. This implies that for any F , ∆D and ∆E ≥ 0.

Lastly,
∂Ds
∂F

= 1−Gs(F ) =⇒ ∂∆D

∂F
= GL(F )−GH(F ) ≥ 0

∂Es
∂F

= Gs(F )− 1 =⇒ ∂∆E

∂F
= GH(F )−GL(F ) ≤ 0

where both inequalities follow from �rst-order stochastic dominance.

Proof of Proposition 1. The result follows from the risk-neutral/normal model of Albagli et al. (2015). Note that the
payo�s of both debt and equity are strictly increasing in z and both payo�s are twice-di�erentiable. Investor positions
are bound above and below and the asset supply is �xed. Moreover, the price of debt (equity) is monotone in investors
beliefs as well as sD (sE).

Proof of Lemma 3. The price of debt can be written pD = DL + qD∆D, where

qD = Φ

(
τzµz + (τDi + τdτ

D
i )sD + τEsE√

ψD(1 + ψD)

)
≡ Φ(q̃D)

Both DL and DH are known. Using a �rst-order Taylor expansion, we can write

V0[pD] ≈ ∆D2 [φ(E0[q̃D])2V0[q̃D]
]
,

where

E0[q̃D] =

(
1 +

1

ψD

)− 1
2

µz,

andφis the standard Gaussian pdf, which is maximized at zero. As a result, an increase in |µz|, which pushes E0[q̃D]
away from zero, causesφ(E0[q̃D]), and therefore, V0[pD], to fall. It is also clear that V0[pD] will increase with information
sensitivity, ∆D.

Knowing that the private signal of the marginal investor exactly equals the public signal obtained from the price of debt
implies that

V0[ ˜qD] =

1
τz

(τE + τi,D + τD)2 +
(
τi,D
τn

+ 2τi,D + τD
)

+ τE

ψD(1 + ψD)

and so we can calculate the e�ect of increased within-market learning as:

∂V0[ ˜qD]

∂τi,D
= (1 + τn)

ψD
[
τi,D

(
τn + 1

τz
(1 + τn)− 1

τn

)
+
((

1
τn

+ 1 + 1
τz

)
τE +

(
1
τn

+ 1
)
τz

)]
[ψD(1 + ψD)]

2

+ (1 + τn)
(τi,D + τD) +

(
1
τn

+ 1
)

(τz + τE)

[ψD(1 + ψD)]
2
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Similarly, we can write

φ(E0[q̃D])2 = φ

((
1 +

1

ψD

)− 1
2

µz

)2

=
1

2π
exp

(
−µ2

z
ψD

1 + ψD

)
∂φ(E0[q̃D])2

∂τi,D
=

1

2π
exp

(
−µ2

z
ψD

1 + ψD

)[
−µ2

z(1 + τn)

(1 + ψD)2

]
Combining these allows us to write the e�ect of increased within-market learning:

∂V0[pD]

∂τi,D
= (∆D)2 φ(E0[q̃D])2ψD(1 + τn)

[ψD(1 + ψD)]2
{τi,D

(
τn +

1

τz
(1 + τn)−

1

τn

)
+

((
1

τn
+ 1 +

1

τz

)
τE +

(
1

τn
+ 1

)
τz

)

−

µ2
z

[
1
τz

(
τE + τi,D + τD

)2
+
(
τi,D
τn

+ 2τi,D + τD

)
+ τE

]
1 + ψD

+Remainder}

> (∆D)2 φ(E0[q̃D])2ψD(1 + τn)

[ψD(1 + ψD)]2
{τi,D

(
τn +

1

τz
(1 + τn)−

1

τn

)
+

((
1

τn
+ 1 +

1

τz

)
τE +

(
1

τn
+ 1

)
τz

)
−
[
µ2
z

[
1

τz

(
τE + τi,D + τD

)2
+

(
τi,D

τn
+ 2τi,D + τD

)
+ τE

]]
+Remainder}

= (∆D)2 φ(E0[q̃D])2ψD(1 + τn)

[ψD(1 + ψD)]2
{τi,D

(
τn +

1

τz
(1 + τn)−

1

τn
− µ2

z

(
1

τn
+ 2 + τn

))
+

(
1

τn
+ 1 +

1

τz
− µ2

z

)
τE

−
µ2
z

τz

(
τE + τi,D + τD

)2
+

(
1

τn
+ 1

)
τz +Remainder}

Note that the remainder is always positive. As a result, when |µz| is su�ciently small, and if τz < τn(or ignoring τz, if

τn is su�ciently large), ∂V0[pD ]
∂τi,D

> 0.

Similarly,

∂V0[ ˜qD]

∂τi,E
= τn

ψD
[
τz + τE

(
1 + 1

τz

)
+ τi,D

(
τn + 1

τz
(1 + τn)− 2

τn
− 1
)]

+
[
τE + τz + τi,D

(
τn − 1

τn

)]
[ψD(1 + ψD)]

2

Following steps similar to those above:

∂φ(E0[q̃D])2

∂τi,E
=

1

2π
exp

(
−µ2

z
ψD

1 + ψD

)[
−µ2

zτn

(1 + ψD)2

]
which implies that

∂V0[pD]

∂τi,E
=

(∆D)2φ(E0[q̃D])2τnψD

[ψD(1 + ψD)]2
{τz + τE

(
1 +

1

τz

)
+ τi,D

(
τn +

1

τz
(1 + τn)−

2

τn
− 1

)

− µ2
z

 1
τz

(
τE + τi,D + τD

)2
+
(
τi,D
τn

+ 2τi,D + τD

)
+ τE

1 + ψD

+Remainder}

>
(∆D)2φ(E0[q̃D])2τnψD

[ψD(1 + ψD)]2
{τz + τE

(
1 +

1

τz

)
+ τi,D

(
τn +

1

τz
(1 + τn)−

2

τn
− 1

)
− µ2

z

[
1

τz

(
τE + τi,D + τD

)2
+

(
τi,D

τn
+ 2τi,D + τD

)
+ τE

]
+Remainder}

=
(∆D)2φ(E0[q̃D])2τnψD

[ψD(1 + ψD)]2
{τz + τE

(
1 +

1

τz
− µ2

z

)
+ τi,D

(
τn +

1

τz
(1 + τn)−

2

τn
− 1− µ2

z

(
1

τn
+ 2 + τn

))
−
µ2
z

τz

(
τE + τi,D + τD

)2
+Remainder}

When |µz| is su�ciently small, and if τz is su�ciently smaller than τn(or ignoring τz, if τn is su�ciently large), ∂V0[pD ]
∂τi,E

> 0.
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Using our work from above, we can also compare the sensitivity of V0[ ˜qD] with respect to learning in each market.

∂V0[ ˜qD]

∂τi,D
=

(1 + τn)

τn

[
∂V0[ ˜qD]

∂τi,E
+

1

ψD(1 + ψD)

]

If ∂V0[ ˜qD ]
∂τi,E

> 0, ∂V0[ ˜qD ]
∂τi,D

> ∂V0[ ˜qD ]
∂τi,E

.

We also need to show that if τi,D > τi,E then V0[qD] > V0[qE ]. We begin by de�ning γ as the di�erence between the
precision in each market (i.e., γ ≡ τi,D − τi,E). Then,

V0[q̃E ] =

1
τz

(τE + τi,E + τD)2 +
(
τi,E
τn

+ 2τi,E
)

+ (τD + τE)

ψE(1 + ψE)

V0[q̃D] =

1
τz

(τE + τi,E + τD)2 +
(
τi,E
τn

+ 2τi,E
)

+ (τD + τE) + γ
(

1
τn

+ 2
)

+ 1
τz

(
2γ (τE + τi,E + τD) + γ2

)
ψE(1 + ψE) + γ(1 + 2ψE) + γ2

We can write V0[q̃E ] = a
b
and V0[q̃D] = a+c

b+d
. In order for V0[q̃D] > V0[q̃E ] , we want ad < bc:[

1

τz

(
τE + τi,E + τD

)2
+

(
τi,E

τn
+ 2τi,E

)
+ (τD + τE)

] [
γ(1 + 2ψ

E
) + γ

2
]
<

[
1

τz

(
2γ
(
τE + τi,E + τD

)
+ γ

2
)

+ γ

(
1

τn
+ 2

)] [
ψ
E

(1 + ψ
E

)
]

After some simpli�cation, this reduces to

[
ψ
E

+ γ
] [ 1

τz

(
τE + τi,E + τD

)2
+

(
τi,E

τn
+ 2τi,E

)
+ (τD + τE)

]
<

[
ψE

τz

((
τE + τi,E + τD

)
+ γ

)
+ (τz + τE + τD)

(
1

τn
+ 2

)
+ τi,E

] [
(1 + ψ

E
)
]

To insure that this inequality holds for any τi,D, τi,E , we can match on endogenous terms and de�ne our condition in
terms of exogenous variables.

[
ψE + γ

] [( τi,E
τn

)
− τi,Eτn

]
<
[
ψE + γ

]
(τz + τD) +

[
(τz + τE + τD)

(
1

τn
+ 1

)]
ψE

+

[
ψE

τz

((
τE + τi,E + τD

)
+ γ
)

+ (τz + τE + τD)

(
1

τn
+ 2

)
+ τi,E

]

If τn ≥ 1, then the LHS must be negative, and so the inequality will hold. That is, if τn ≥ 1, V0[ ˜qD ]
V0[q̃E ]

> 1. To show that

V0[qD] > V0[qE ], however, we must show that

V0[q̃D]

V0[q̃E ]
>
φ(E0[q̃E ])2

φ(E0[q̃D])2

≈ 1 + µ2
z

(
γ

(1 + ψE) (1 + ψE + γ)

)
It is clear that for su�ciently small |µz|, the inequality above must hold.

Finally, we can compare the variance of the price received to the variance of the �fundamental� value. As before, we
begin by examining V0[q̃] and V0[q̃D] :

V0[q̃] =
1

τz
> V0[ ˜qD] ⇐⇒

ψD > τz

(
τi,D

(
1

τn
− τn

)
− (τz + τE)

)
As long as τn ≥ 1, the inequality above holds. To show that V0[qD] > V0[q], however, we must show that

V0[q̃D]

V0[q̃]
>

φ(E0[q̃])2

φ(E0[q̃D])2

≈ 1 + µ2
z

(
1

ψD

)
It is clear that for su�ciently small |µz|, the inequality above must hold.

Proof of Lemma 4. Using Lemma 5, we can write the agent's expectation of qD :
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E0[qD] = Φ

 ψDµz√
ψD(1 + ψD) + (τi,D + τD + τE)2τ−1

z + (τi,D + τD)2τ−1
D + τE


≡ Φ(q̄Dµz)

which implies that the expected price of debt is simply E0[pD] = DL + E0[qD]∆D. The agent's expectation of the
fundamental value of the asset, i.e., the price he'd receive by waiting until time-1 to sell it can be written DL+E0[q]∆D,
where

E0[q] = Φ

(
µz√

1 + τ−1
z

)
.

It is straightforward to compare the expected price to the expected fundamental value of the asset:

q̄D =
1√

1 + τ−1
z +

τi,D
τn

+τi,D

(ψD)2

<
1√

1 + τ−1
z

If µz = 0, E0[qD] = E0[q]. Otherwise, given that Φis a strictly increasing function, this implies that

=⇒ E0[q]

{
> E0[qD] if µz > 0

< E0[qD] if µz < 0

Finally, we must compare q̄D to its similarly-de�ned counterpart, q̄E . Suppose τi,D > τi,E . Then q̄D < q̄E i�
τi,D

(ψD)2
>

τi,E
(ψE)2

which is true i�

(τi,D − τi,E)
[
τ2
z + 2τz(τD + τE) + τ2

D + τ2
E + 2τi,Eτi,D

(
2τ2
n − 1

)]
> 0

If τn is su�ciently large, q̄D < q̄E . When these conditions hold,

=⇒ E0[qD]

{
< E0[qE ] if µz > 0

> E0[qE ] if µz < 0

In combination with Lemma 2 (∆D ≥ 0), this completes the proof.
Proof of Proposition 2 Because V0[qD], V0[qE ] < V[q], it is su�cient to show that if Cov(qD, q) > V0[qD] and
Cov(qE , q) > V0[qE ] the agent will sell everything at time-0.

Cov(q̃D, q̃) > V[q̃D] if

[τi,D + τdτi,D + τE ]2 > τz

(
τi,D
τn

+ τi,D

)
+ (τi,D + τdτi,D + τE)

This inequality holds if τz is su�ciently low, and τn is su�ciently high. A similar argument holds with respect to
Cov(q̃E , q̃). Given µz = 0, the φ(E[·])2 is constant, which completes the proof.
Proof of Proposition 3. The agent's objective is to choose F to minimize

V0[pD + pE ] = ∆D2V0[qD] + ∆E2V0[qE ] + 2∆D∆E
√
V [qD]V[qE ]Corr(qD, qE).

The marginal value of increasing F can be written:
∂V0[pD + pE ]

∂F
= 2 [GL(F )−GH(F )] [∆D(F ) (V0[qD]− Cov(qD, qE))−∆E(F ) (V0[qE ]− Cov(qD, qE))]

We de�ne F ≡ sup{F : ∆D(F ) = 0} and F̄ ≡ inf{F : ∆E(F ) = 0}. It is straightforward to show that (i) ∀F ≤ F ,
debt is information-insensitive, (ii) ∀F ≥ F̄ , equity is information-insensitive, and (iii) if F < F < F̄ , then both debt
and equity are information-sensitive. Note that it is su�cient to consider F such that F ≤ F ≤ F̄ . For any value of F
outside of this interval, ∂V0[pD+pE ]

∂F
= 0.

By Lemma 3, if τi,D > τi,E , V0[qD] > V0[qE ] and thereforeV0[qD] > Cov(qD, qE). If V[qE ] < Cov(qD, qE), it must be

that ∂V0[pD+pE ]
∂F

≥ 0 (because GL(F )−GH(F ) is always (weakly) positive). As a result, to minimize the uncertainty of
his proceeds, the agent setsF ∗ = F , which implies that ∆E(F ∗) = ∆V and ∆D(F ∗) = 0.
On the other hand, if V[qE ] > Cov(qD, qE), then it must be that

∆D(F ∗)

∆E(F ∗)
=

V0[qE ]− Cov(qD, qE)

V0[qD]− Cov(qD, qE)
(17)

and because V0[qD] > V0[qE ], this implies that 0 < ∆D(F ∗) < ∆E(F ∗) < ∆V .

We show that this is the only solution to the agent's minimization problem in two steps. First, we de�ne ∂V0[pD+pE ]
∂F

≡
2 [GL(F )−GH(F )] η(F ), so that
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∂η(F )

∂F
= [GL(F )−GH(F )] [V0[qD] + V0[qE ]− 2Cov(qD, qE)] ≥ 0

If GL(F ∗) 6= GH(F ∗), then F ∗is unique. Otherwise, due to the weak monotonicity of η(F ), F ∗ ∈ [Fl, Fh] where
Fl ≡ min{F : η(F ) = 0}, Fh ≡ max{F : η(F ) = 0}. Note that it must be that F < F ∗ < F̄ .

Second, we show that for all other points in which ∂V0[pD+pE]
∂F

= 0, the variance must be higher. Note that at any other

such F such that ∂V0[pD+pE]
∂F

= 0, it must be that GL(F ) = GH(F ). There are two cases to consider:

1. Suppose GL(F ) = GH(F ) and F < Fl. Then there exists some F ′ > F such that GL(F ′) > GH(F ′) and because
F ′ < Fl it must be that η(F ) < 0. As a result, the agent could lower his uncertainty by increasing F .

2. Suppose GL(F ) = GH(F ) and F > Fh. Then there exists some F ′ < F such that GL(F ′) > GH(F ′) and because
F ′ > Fh it must be that η(F ) > 0. As a result, the agent could lower his uncertainty by decreasing F .

Following similar steps yield the counterpart results when τi,E > τi,D.

Conditions under which V[qE ] > Cov(qD, qE):

When µz = 0, V0[q̃E ] > Cov(q̃E , q̃D) =⇒ V0[qE ] > Cov(qE , qD). As τi,E → τi,D

Cov(q̃E , q̃D) =

1
τz

(τi,D + τD + τE) (τi,E + τD + τE) + (τi,D + τD) + (τi,E + τE)√
ψD(1 + ψD)ψE(1 + ψE)

→
1
τz

(τi,D + 2τD)2 + 2(τi,D + τD)

ψD(1 + ψD)

V0[q̃E ] =

1
τz

(τE + τi,E + τD)2 + (τi,E + τD) + (τi,E + τE) +
τi,E
τn

ψE(1 + ψE)

→
1
τz

(τi,D + 2τD)2 + 2 (τi,D + τD) +
τi,D
τn

ψD(1 + ψD)

It's clear that in this case, V0[qE ] > Cov(qE , qD), and by the continuity of both functions, must hold when |τi,E − τi,D|
is su�ciently small.

Proof of Proposition 4. Each investor chooses the precision of his signal, taking the precision of all other investors as
given. We will represent the individual investor's precision as τi and his beliefs about the precisions chosen by others as
τi,D and τi,E , as before. Increasing or decreasing τi has no e�ect on the precision of the signal obtained from prices -
each individual is part of a continuum of investors. qD remains the same and we now write qi,D :

qi,D = Φ

(
τzµz + τisi + τDsD + τEsE√

ψi,D(1 + ψi,D)

)
≡ Φ( ˜qi,D)

We approximate qi,D and qD using a �rst-order Taylor expansion, e.g., qi,D ≈ Φ
(
E[ ˜qi,D]

)
+φ

(
E[ ˜qi,D]

)(
˜qi,D − E[ ˜qi,D]

)
,

where E[q̃D] is de�ned above and

E[ ˜qi,D] =

(
1 +

1

τz + τi + τD + τE

)− 1
2

µz.

With µz = 0, we can simplify symmetrically: qi,D ≈ 1
2

+ φ(0) ˜qi,D and qi,D ≈ 1
2

+ φ(0)q̃D. As a result, we can rewrite
each investor's expected utility from trading the asset as

EUD =
∆D

mD
φ(0)E0 [( ˜qi,D − q̃D)| ˜qi,D > q̃D] .

The expectation of both ˜qi,D and q̃D is zero and they are both normally-distributed variables (with di�erent variances,
depending upon the precisions chosen). As a result, we can use the properties of the folded normal distribution to write

E0 [( ˜qi,D − q̃D)| ˜qi,D − q̃D > 0] =

√
V[( ˜qi,D − q̃D)]

2π

=⇒ EUD =

[
∆Dφ(0)

mD

√
2π

]√
V[( ˜qi,D − q̃D)] (18)

The information acquisition of investors has no impact on the term in brackets in equation (18).

∂EUD
∂τi

=

[
∆D

mD2π

]
1

2

∂V[( ˜qi,D − q̃D)]

τi
[V[( ˜qi,D − q̃D)]]−

1
2 > 0 ⇐⇒ ∂V[( ˜qi,D − q̃D)]

τi
> 0
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∂2EUD
∂τ2
i

=

[
∆D

mD2π

][
1

2

∂2V[( ˜qi,D − q̃D)]

τ2
i

[V[( ˜qi,D − q̃D)]]−
1
2 − 1

4

[
∂V[( ˜qi,D − q̃D)]

τi

]2

[V[( ˜qi,D − q̃D)]]−
3
2

]

This gives us su�cient conditions for ∂EUD
∂τi

> 0 and ∂2EUD
∂τ2i

< 0:

∂V[( ˜qi,D − q̃D)]

τi
> 0 and

∂2V[( ˜qi,D − q̃D)]

τ2
i

< 0 =⇒ ∂2EUD
∂τ2
i

< 0

The random variance ˜qi,D − q̃D can be rewritten as

˜qi,D − q̃D =
(τi + τD + τE) z + τiεi + τDuD + τEuE√

ψi,D(1 + ψi,D)
− (τi,D + τD + τE) z + (τi,D + τD)uD + τEuE√

ψD(1 + ψD)

Note that z, εi, uD, uE are all independent. As a result,

V[( ˜qi,D − q̃D)] =

[
τi + τD + τE√
ψi,D(1 + ψi,D)

− (τi,D + τD + τE)√
ψD(1 + ψD)

]2
1

τz
+

[
τi

ψi,D(1 + ψi,D)

]

+

[
τD√

ψi,D(1 + ψi,D)
− τi,D + τD√

ψD(1 + ψD)

]2
1

τD
+

[
τE√

ψi,D(1 + ψi,D)
− τE√

ψD(1 + ψD)

]2
1

τE

First, we establish under what conditions V[( ˜qi,D − q̃D)] is increasing in τi.

∂V[( ˜qi,D − q̃D)]

∂τi
=

1
τz

(τi + τD + τE)ψi,D + ψi,D(1 + ψi,D)

[ψi,D(1 + ψi,D)]2
−

1
τz

(τi,D + τD + τE)ψi,D√
ψD(1 + ψD) [ψi,D(1 + ψi,D)]

3
2

=
ψi,D

τz [ψi,D(1 + ψi,D)]
3
2

[
(τi + τD + τE) + τz(1 + ψi,D)√

ψi,D(1 + ψi,D)
− (τi,D + τD + τE)√

ψD(1 + ψD)

]

This implies that
∂V[( ˜qi,D− ˜qD)]

∂τi
> 0 ⇐⇒ [

(1 + τz)ψ
i,D
]2
ψD(1 + ψD) > (τi,D + τD + τE)2 ψi,D(1 + ψi,D)[

(1 + τz)
2ψi,D

]
ψD +

[
(1 + τz)

2ψi,D
]

(τi,D + τD + τE + τz)
2 > (τi,D + τD + τE)2 (1 + ψi,D)[

(1 + τz)
2ψi,D

]
ψD +

[
(1 + τz)

2ψi,D
] [

2τz (τi,D + τD + τE) + τ2
z

]
> (τi,D + τD + τE)2 (1− (2τz + τ2

z )ψi,D)

It is clear that as τz increases, the RHS falls and the LHS increases. If τz is su�ciently large, then
∂V[( ˜qi,D− ˜qD)]

∂τi
> 0.

Turning our attention to establishing concavity, we can write

(∂V[( ˜qi,D − q̃D)])2

∂2τi
=

ψi,D

τz [ψi,D(1 + ψi,D)]
5
2

[
−2ψi,D (1 + τz)ψ

i,D

(ψi,D(1 + ψi,D))
1
2

+

(
1 + 4ψi,D

)
(τi,D + τD + τE)

2
√
ψD(1 + ψD)

]

And so
(∂V[( ˜qi,D− ˜qD)])2

∂2τi
< 0 ⇐⇒

ψ
i,D

(
4ψ
i,D

(1 + τz)
)2
ψ
D

(1 + ψ
D

) >
((

1 + 4ψ
i,D

) (
τi,D + τD + τE

))2
(1 + ψ

i,D
)

ψ
i,D

(
4ψ
i,D

(1 + τz)
)2 (

(1 + τz)
(
ψ
D
)

+ τz
(
τi,D + τD + τE

))
>
(
τi,D + τD + τE

)2 [
(1 + ψ

i,D
)
(
1 + 4ψ

i,D
)2
− ψi,D

(
4ψ
i,D

(1 + τz)
)2]

As above, the LHS is positive and increasing in τz whereas for su�ciently large τz the RHS must be negative, due to the

term in brackets. As a result, if τz is su�ciently large, then
∂2V[( ˜qi,D− ˜qD)]

∂τ2i
< 0.

Proof of Corollary 1. The agent chooses τi to maximize EUD − C(τi). Under the su�cient conditions established
in the proof of Proposition 4, and the assumptions regarding the cost function, this implies that the optimal τi sets
∂EUD
∂τi

= C′(τi):
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∂V[( ˜qi,D − q̃D)]

τi
[V[( ˜qi,D − q̃D)]]−

1
2 =

C′(τi)mD(4π)

∆D

We are looking for a symmetric equilibrium, and so we can substitute τi = τi,D into the expressions from the proof of
Proposition 4. This yields:

∂V[( ˜qi,D − q̃D)]

τi
=

1

ψD(1 + ψD)

V[( ˜qi,D − q̃D)] =

τi,D
(

1 + 1
τn

)
ψD(1 + ψD)

 (19)

Taken together: √
τi,D

(
1 +

1

τn

)
ψD(1 + ψD) =

∆D

mDC′(τi,D)(4π)
(20)

Equity investors choose the precision of their signals in a similar fashion, so that τi,E solves√
τi,E

(
1 +

1

τn

)
ψE(1 + ψE) =

∆E

mEC′(τi,E)(4π)
(21)

Inspection of equations (20) and (21) yield the following comparative statics. Suppose τz increases - then both τi,E and
τi,D must increase. On the other hand, suppose mD falls - while τi,D must increase, in equilibrium, this causes τi,E to
fall. It is straightforward to see that an increase in ∆D � which implies a decrease in ∆E � must result in τi,D rising
and τi,E falling. In equilibrium, if ∆E

mE
> ∆D

mD
, it must be that τi,E > τi,D. Finally, equation (20) makes clear that if

τE = 0, which is equivalent to debt investors being unable to observe equity prices, τi,D must increase in equilibrium.

Proof of Proposition 5. As before, the agent's objective is to choose F to minimize the variance of his proceeds. The
agent takes as given the precision choice of debt and equity investors, and so as before,

∂V0[pD + pE ]

∂F
= 2 [GL(F )−GH(F )] [∆D(F ) (V0[qD]− Cov(qD, qE))−∆E(F ) (V0[qE ]− Cov(qD, qE))]

As before, in equilibrium ∂V0[pD+pE ]
∂F

= 0, but now equations (20) and (21), i.e., investors will take the agent's choice as
given in choosing their own precisions. As in Proposition 5, it is su�cient to consider F such that F ≤ F ≤ F̄ . For any
value of F outside of this interval, ∂V0[pD+pE ]

∂F
= 0.

Suppose mD < mE . We begin our analysis at Feq � the face value at which ∆D
mD

= ∆E
mE

which implies that ∆E > ∆D.

At Feq, the investors' optimization problem implies that τi,D = τi,E and so V0[qD] = V0[qE ]. As a result,
∂V0[pD + pE ]

∂F
= 2 [GL(F )−GH(F )] (V0[qD]− Cov(qD, qE)) (∆D −∆E) < 0.

On the other hand, consider F such that ∆D = ∆E. Then the investor's optimization problem implies that τi,D > τi,E ,
which in turn implies that V0[qD] > V0[qE ] and

∂V0[pD + pE ]

∂F
= 2 [GL(F )−GH(F )] [∆D(F ) (V0[qD]− V0[qE ])] > 0

It is clear, then, that at the optimal the optimal F̄ > F ∗ > Feq > F and that in equilibrium, ∆D(F ∗) < ∆E(F ∗) and
V0[qD] > V0[qE ]. As before,

∆D(F ∗)

∆E(F ∗)
=

V0[qE ]− Cov(qD, qE)

V0[qD]− Cov(qD, qE)
(22)

Showing that this is the only solution to the agent's problem uses the same steps as in Proposition 5, and so they are
omitted here. Following similar steps yield the counterpart results when mE < mD.

Proof of Proposition 6.

Given that ∆D + ∆E = ∆V and adding equations (20), (21), in equilibrium it is always the case that:[
mDC

′(τi,D)
√
τi,DψD(1 + ψD) + (1−mD)C′(τi,E)

√
τi,EψE(1 + ψE)

]
=

∆V[
4π

√(
1 + 1

τn

)] (23)

We want to show under what conditions τa ≡ τi,E + τi,D is minimized by issuing an information-insensitive security. We
rewrite the LHS of the equation above by de�ning h(x, y) ≡

√
x (τz + x+ yτn) (1 + (τz + x+ yτn)):

mDC
′(τi,D)h(τi,D, τa) + (1−mD)C′(τa − τi,D)h(τa − τi,D, τa) ≡ g(τi,D, τa)

We have assumed that C′(τi,D), C′′(τi,D) > 0. Note that h(τi,D) > 0 and we can write
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∂h(x, y)

∂x
≡ h′(τi,D, τa) =

1

2

[(
ψD
)(

1 + ψD
)

+ τi,D
(

1 + 2
(
ψD
))](

τi,D
(
ψD
)(

1 + ψD
))− 1

2
> 0

and

∂2h(x, y)

∂x2
≡ h′′(τi,D, τa) =

[(
1 + 2ψD + τi,D

)](
τi,D

(
ψD
)(

1 + ψD
))− 1

2

− 1

4

[(
ψD
)(

1 + ψD
)

+ τi,D
(

1 + 2
(
ψD
))]2 (

τi,D
(
ψD
)(

1 + ψD
))− 3

2

Then
∂2g(τi,D,τa)

∂τ2
i,D

≡ g′′(τi,D, τa) > 0 i�:

C′′′(τa − τi,D)h(τa − τi,D, τa) + C
′′

(τa − τi,D)h
′
(τa − τi,D, τa) + C

′′
(τa − τi,D)h

′
(τa − τi,D, τa) + C

′
(τa − τi,D)h

′′
(τa − τi,D, τa)︸ ︷︷ ︸

Ê



+
mD

1−mD

C′′′(τi,D)h(τi,Dτa) + C
′′

(τi,D)h
′
(τi,D, τa) + C

′′
(τi,D)h

′
(τi,D, τa) + C

′
(τi,D)h

′′
(τi,D, τa)︸ ︷︷ ︸

D̂

 > 0 (24)

It can be shown that h′′(τi,D) is positive for su�ciently low τz, τn, but the latter is generally required to be su�ciently
high for earlier Lemmas to hold. On the other hand, if C′′′ ≥ 0 and C′′/C′ is su�ciently large, then g′′(τi,D) > 0.

If g′′(τi,D, τa) > 0, then given τa, it is maximized at either τi,D = τa or τi,D = 0 � the two �corners�. If mD ≥ 1
2
it is

the former; if mD ≤ 1
2
it is the latter. Suppose that mD < 1

2
(the argument follows the same structure when mD > 1

2
).

Then g(0, τa) is the maximum value, given τa. Let τa be de�ned as the solution to

g(0, τa) =
∆V[

4π

√(
1 + 1

τn

)] .
In this case, τa = τi,E , and τi,D = 0 satisfy equations (20), (21), that is they are the optimal solution to investors'
information acquisition problems when ∆D = 0. Moreover, because g(0, τa) is the maximum value, for all τi,D ∈ (0, τa],
it must be that

g(τi,D, τa) <
∆V[

4π

√(
1 + 1

τn

)] .
Finally, it is straightforward to see that

∂g(τi,D,τa)

∂τa
> 0. This implies that equation (23) can only be satis�ed if τa > τa,

that is, if ∆D, ∆E > 0, then aggregate information must increase.

Note that if mD = 1
2
, then the optimal precisions are equal: τi,D = τi,E . Moreover, note that if mD = 1

2
and

g′′(τi,D, τa) > 0, then, given τa, the minimum value of g(τi,D, τa) solves:

C′′(τi,D)h(τi,D, τa) + C′(τi,D)h′(τi,D, τa) = C′′(τa − τi,D)h(τa − τi,D, τa) + C′(τa − τi,D)h′(τa − τi,D, τa).

which of course holds if τi,D = τi,E . As a result, when τi,D = τi,E , then τa must be maximized for equation (23) to hold.

Finally, consider the case when C(τ) = κτa with κ > 0, a ≥ 2. Then, turning to the term D̂ from equation (24):

2κ(a)(a− 1)τa−2
i,D h′(τi,D) + κaτa−1

i,D h′′(τi,D) > 0if

2(a− 1)h′(τi,D) + τi,Dh
′′(τi,D) > 0 which holds if

2h′(τi,D) + τi,Dh
′′(τi,D) > 0

The last inequality can be written:

4
[(
ψ
D
) (

1 + ψ
D
)

+ τi,D

(
1 + 2

(
ψ
D
))

+ τi,D

[(
1 + 2ψ

D
+ τi,D

)]] ((
ψ
D
) (

1 + ψ
D
))

>
[(
ψ
D
) (

1 + ψ
D
)

+ τi,D

(
1 + 2

(
ψ
D
))]2

which holds as long as

4
[
τi,D

[(
1 + 2ψ

D
+ τi,D

)]] ((
ψ
D
) (

1 + ψ
D
))

+ 3
[(
ψ
D
) (

1 + ψ
D
)]2

+ τi,D

(
1 + 2

(
ψ
D
)) [

2
(
ψ
D − τi,D

) (
1 + ψ

D
)

+ τi,D

]
> 0,

which is always true. Similar logic applies to the corresponding equity market expression, Ê from equation (24). Taken
together, this implies that g′′(τi,D, τa) > 0.

Proof of Proposition 7. It is clear that if τi,D > τi,E , and γ ≡ τi,D − τi,E :
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V[( ˜qi,D − q̃D)] > V[( ˜qi,E − q̃E)] ⇐⇒

τiEγψ
E(2τn − 1) + γψE [τz + γτn] > γ2(1− τn)− γ(τz + 2τi,Eτn)

When τn is su�ciently high, this must hold. In combination with Corollary 1, this implies that when ∆D
mD

> ∆E
mE

, the
expected utility in the two markets cannot be the same. As a result, when investors can freely choose in which market
to trade, mD and mE will be set in equilibrium such that ∆D

mD
= ∆E

mE
.

Proof of Theorem 1. Consider the agent's problem when both mD,min and mE,min are less than 1
2
. There are three

regions to consider:

1. m∗D(F ) ≥ mD,min andm
∗
E ≥ mE,min. Then τi,D = τi,E and is constant in this interval. As a result, by Proposition

4, in this region the optimal F sets ∆D = ∆E.

2. m∗D(F ) ≤ mD,min. Then mD = mD,min < 1−mE,min = mE . From the proof of Proposition 5, ∂V0[pD+pE ]
∂F

< 0 in
this interval, and so the optimal F sets m∗D = mD,min. But as this point overlaps with the �xed precision region,
this choice of F is suboptimal.

3. m∗E(F ) ≤ mE,min. Then mE = mE,min < 1−mD,min = mD. From the proof of Proposition 5, ∂V0[pD+pE ]
∂F

> 0 in
this interval, and so the optimal F sets m∗E = mE,min. But this point overlaps with the �xed precision interval,
and so this choice of F is suboptimal.

Now consider the agent's problem when mE,min >
1
2
.

1. m∗D(F ) ≥ mD,min and m∗E(F ) ≥ mE,min. The agent would like to choose F such that∆D = ∆E , but this isn't
feasible. Instead he optimally minimizes |∆D −∆E|, which implies setting m∗E(F ) = mE,min.

2. m∗D(F ) ≤ mD,min. Then the reasoning above holds: the optimal F sets m∗D = mD,min but this is suboptimal.

3. m∗E(F ) ≤ mE,min. Then mE = mE,min > 1 −mD,min = mD. By Proposition 5, the optimal F sets V0[qE ] <
V0[qD] which requires m∗E(F ) < mE,min and as a result ∆E > ∆D. This is the optimal level of debt, as the
optimal choice of debt in the �xed precision interval overlapped with this interval and so is clearly suboptimal.

Similar steps yield our result when mD,min >
1
2
.

Proof of Lemma 5. Using the proof of Lemma 1, substitute µv = −a and σv =
√
c, and under the assumption that

both a and c are constants,

E
[
Φ

(
z + a√

c

)
| z ∼ N (µz, σ

2
z)

]
= Φ

(
µz + a√
σ2
z + c

)

Veri�cation of Equation (10):

We begin by noting that given zT−1, we can write sE,T−1:

E[sE,T−1|zT−1] = (1− ρ)µz + ρzT−1 V[sE,T−1|zT−1] = (τ−1
z + τ−1

E,T−1).

This allows us to write:

E[qE,T−1|zT−1,P] = Φ

 (1− ρ)µz + ρzT−1√
1 +

(
ψET−1

)−1
+

(
τi,T−1+τE,T−1

ψE
T−1

)2

V[sE,T−1|zT−1]



(
ψET−1

)−1

+

(
τi,T−1 + τE,T−1

ψET−1

)2

V[sE,T−1|zT−1] =
ψET−1 + (τi,T−1 + τE,T−1)2

(
1
τz

+ 1
τE,T−1

)
(
ψET−1

)2
=

1

τz
+
−τz(τi,T−1 + τE,T−1)

τz
(
ψET−1

)2 +
(τi,T−1 + τE,T−1)2

(
1

τE,T−1

)
(
ψET−1

)2
=

1

τz
+
τi,T−1

(
1+τn
τn

)
(
ψET−1

)2 ≡ τ−1
z + ψPT−1

Proof of Lemma 6. The price at time-T − k is pE,T−k = VL + qE,T−k∆V where
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qE,T−k ≡ Φ

 (1− ρ)µz
∑k
j=1 ρ

(j−1) + ρkzT−k + ρk−1

(
(τi,T−k+τE,T−k)(eT−k+1+uT−k/

√
τi,T−k)

ψE
T−k

)
√

1 + τ−1
z

∑k−1
j=1 ρ

2(j−1) +
∑k−1
j=1 ρ

2(j−1)ψPT−j + ρ2(k−1)
(
ψET−k

)−1

 , (25)

ψET−j ≡ (τz + τi,T−j + τE,T−j), ψPT−j ≡
τi,T−j

(
1+τn
τn

)
(
ψET−j

)2 .

Taking expectations of each object yields:

E[qE,T−k|zT−k,P] = Φ

 (1− ρ)µz
∑k
j=1 ρ

(j−1) + ρk−1zT−k√
1 + τ−1

z

∑k
j=1 ρ

2(j−1) +
∑k
j=1 ρ

2(j−1)ψPT−j



E[qE,T−k+n|zT−k,P] = Φ

 (1− ρ)µz
∑k
j=1 ρ

(j−1) + ρk−1zT−k√
1 + τ−1

z

∑k
j=1 ρ

2(j−1) +
∑k−n
j=1 ρ

2(j−1)ψPT−j


ψPT−j is always positive when τi,T−j > 0. Taken in combination with the fact that Φ is strictly increasing, the proof is
completed.

Proof of Lemma 7. We use our notation from earlier and de�ne ˜qE,T−k as qE,T−k ≡ Φ( ˜qE,T−k). Then we can write:

V[qE,T−k|zT−k,P] = φ (E[ ˜qE,T−k|zT−k,P])2 V[ ˜qE,T−k|zT−k,P]

φ (E[ ˜qE,T−k|zT−k,P])2 =
1

2π
exp

−
[
(1− ρ)µz

∑k
j=1 ρ

(j−1) + ρkzT−k
]2

1 + τ−1
z

∑k−1
j=1 ρ

2(j−1) +
∑k−1
j=1 ρ

2(j−1)ψPT−j + ρ2(k−1)
(
ψET−k

)−1



V[ ˜qE,T−k|zT−k,P] =

ρ2(k−1)

[
(τi,T−k+τE,T−k)

ψE
T−k

]2 [
1
τz

+ 1
τE,T−k

]
1 + τ−1

z

∑k−1
j=1 ρ

2(j−1) +
∑k−1
j=1 ρ

2(j−1)ψPT−j + ρ2(k−1)
(
ψET−k

)−1

Similarly, we can write the agent's uncertainty about prices n ≤ k − 1 periods ahead:

V[qE,T−k+n|zT−k,P] = φ (E[ ˜qE,T−k+n|zT−k,P])2 V[ ˜qE,T−k+n|zT−k,P]

φ (E[ ˜qE,T−k+n|zT−k,P])2 =
1

2π
exp

−
[
(1− ρ)µz

∑k
j=1 ρ

(j−1) + ρkzT−k
]2

1 + τ−1
z

∑k−n−1
j=1 ρ2(j−1) +

∑k−n−1
j=1 ρ2(j−1)ψPT−j + ρ2(k−n−1)

(
ψET−k+n

)−1



V[ ˜qE,T−k+n|zT−k,P] =

1
τz

∑n
j=1 ρ

2(k−j) + ρ2(k−n−1)

[
(τi,T−k+n+τE,T−k+n)

ψE
T−k+n

]2 [
1
τz

+ 1
τE,T−k+n

]
1 + τ−1

z

∑k−n−1
j=1 ρ2(j−1) +

∑k−n−1
j=1 ρ2(j−1)ψPT−j + ρ2(k−n−1)

(
ψET−k+n

)−1

For all n, the denominator of V[ ˜qE,T−k|zT−k,P] exceeds the denominator of V[ ˜qE,T−k+n|zT−k,P] � the former always
contains the latter. It is therefore su�cient to show that the numerator of V[ ˜qE,T−k+n|zT−k,P] exceeds the numerator
V[ ˜qE,T−k|zT−k,P] to show that V[ ˜qE,T−k+n|zT−k,P] > V[ ˜qE,T−k|zT−k,P]. This is true if[

(τi,T−k + τE,T−k)

ψET−k

]2 [
1

τz
+

1

τE,T−k

]
<

1

τz

τi,T−kτz
(
1− τ2

n

)
< τnτ

2
z

This inequality holds for su�ciently large τz, τn.

On the other hand, as long as
[
(1− ρ)µz

∑k
j=1 ρ

(j−1) + ρkzT−k
]2
6= 0, then φ

(
E[ ˜qE,T−k]

)2

< φ
(
E[ ˜qE,T−k+n]

)2

. Thus,

if |(1− ρ)µz
∑k
j=1 ρ

(j−1) + ρkzT−k| is su�ciently small, V[qE,T−k+n|zT−k,P] > V[qE,T−k|zT−k,P].

Proof of Theorem 2. Suppose the random variable w can be written as w = c(a + bx), where a and b are random
variables and c is a constant. If the objective is U ≡ E[w]− γ

2
V[w], and the choice variable is x, then it is straightforward

to see that
∂U

∂x
= cE[b]− γc2 [Cov(a, b) + xV[b]]
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which implies that there is a unique critical point when

x∗ =

1
cγ
E[b]− Cov(a, b)

V[b]
(26)

Moreover, U is maximized at x∗, as ∂2U
∂x2

= −γc2V[b], which is always less than zero. The future proceedings at each
point in time can be written as a linear function of the agent's current retention decision, and so the optimal fraction
retained can be written as in (26). We will prove the statement of the theorem by induction. We begin by showing that
the recursion holds from T − 1 to T − 2:

WT−1,T =

[
T−2∏
k=0

αk

]
[VL + ∆V (qE,T−1 + αT−1 (qE,T − qE,T−1))]

As a result, we can write

αT−1(zT−1,

T−2∏
k=0

αk) =

E[qE,T−qE,T−1|zT−1]

γ∆V
∏T−2
k=0

αk
− Cov(qE,T − qE,T−1, qE,T−1|zT−1)

V[qE,T − qE,T−1|zT−1]

If we de�ne wT−1 as the retention decision which minimizes U at T − 1, then we can rewrite

αT−1(zT−1,

T−2∏
k=0

αk) =

E[qE,T−qE,T−1|zT−1]

(γ∆V )
∏T−2
k=0

αk

V[qE,T − qE,T−1|zT−1]
+ wT−1.

≡ ˆχT−1

(γ∆V )
∏T−2
k=0 αk

+ wT−1

We can substitute this optimal policy into the agent's future proceeds at T − 2, which are now linear in αT−2:

WT−2,T =

[
T−3∏
k=0

αk

][
VL + ∆V

(
qE,T−2 +

χT−1

(γ∆V )
∏T−3
k=0 αk

+ αT−2

(
qPE,T−1 − qE,T−2

))]
qPE,T−k ≡ qE,T−k + wT−k

(
qPE,T−k+1 − qE,T−k

)
χT−k ≡ ˆχT−k

(
qPE,T−k+1 − qE,T−k

)
To complete the proof, we will conjecture that we can write:

WT−k,T =

[
T−k−1∏
k=0

αk

][
VL + ∆V

(
qE,T−k +

∑k−1
j=1 χT−k+j

(γ∆V )
∏T−k−1
k=0 αk

+ αT−k
(
qPE,T−k+1 − qE,T−k

))]
This implies that the optimal retention decision can be written:

αT−k(zT−k,

T−k−1∏
k=0

αk) =

E[qPE,T−k+1−qE,T−k|zT−k]

γ∆V
∏T−k−1
k=0

αk
− Cov(qPE,T−k+1 − qE,T−k, qE,T−k +

∑k−1
j=1 χT−k+j

(γ∆V )
∏T−k−1
k=0

αk
|zT−k)

V[qE,T − qE,T−1|zT−1]

=

E[qPE,T−k+1−qE,T−k|zT−k]−Cov(qPE,T−k+1−qE,T−k,
∑k−1
j=1 χT−k+j |zT−k)

γ∆V
∏T−k−1
k=0

αk

V[qE,T − qE,T−1|zT−1]
+ wT−k

=
ˆχT−k

γ∆V
∏T−k−1
k=0 αk

+ wT−k

where wT−k is the minimum-variance retention decision ignoring any future market-timing activity. Substituting this
into the agent's future proceeds at T − k − 1:

WT−k,T =

[
T−k−2∏
k=0

αk

][
VL + ∆V

( ∑k
j=1 χT−k+j

(γ∆V )
∏T−k−1
k=0 αk

+ qPE,T−k

)]
=⇒

WT−k−1,T =

[
T−k−2∏
k=0

αk

][
VL + ∆V

(
qE,T−k−1 +

∑k
j=1 χT−k+j

(γ∆V )
∏T−k−2
k=0 αk

+ αT−k−1

(
qPE,T−k − qE,T−k−1

))]

which is of the conjectured form, completing the proof.
Proof of Proposition 8.
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First, we examine whether or not the agent wants to contribute cash when �nancing via debt:

∂V[P |Debt]
∂c

=

[
∂∆D(F (I, c))

∂c

] [
∆D(F (I, c))

2

]
[V[2qD,T−k]− Cov(2qD,T−k, qE,T−k+j + qD,T−k+j)]

−
[
∂∆D(F (I, c))

∂c

] [
∆V −∆D(F (I, c))

2

]
[V[qE,T−k+j + qD,T−k+j ]− Cov(2qD,T−k, qE,T−k+j + qD,T−k+j)]

Note that because the face value of debt required falls with c, ∂∆D(F (I,c))
∂c

< 0. There are two cases to consider:
(1)V[qE,T−k+j + qD,T−k+j ] > 2V[qD,T−k] > Cov(qD,T−k, qE,T−k+j + qD,T−k+j) and (2) V[qE,T−k+j + qD,T−k+j ] >

Cov(qD,T−k, qE,T−k+j + qD,T−k+j) > 2V[qD,T−k]. As a result, ∂V[P |Debt]
∂c

< 0 only when ∆D(F (I, c)) is su�ciently
large, relative to ∆V − ∆D(F (I, c)), which implies that there is a threshold investment level below which c = 0. Let

ID ≡ inf{I : ∂V[P |Debt]
∂c

≥ 0 when c = 0}. Note that in case (2), ∂V[P |Debt]
∂c

> 0 for all c and so cash is never used.

We can do the same when the agent is �nancing via equity:

∂V[P |Equity]

∂c
= ∆V 2 ∂α(I, c)

∂c
[α(I, c)] [V[qE,T−k + q̂J ]− Cov(qE,T−k + q̂J , qE,T−k+j + qD,T−k+j)]

−∆V 2 ∂α(I, c)

∂c
[1− α(I, c)] [V[qE,T−k+j + qD,T−k+j ]− Cov(qE,T−k + q̂J , qE,T−k+j + qD,T−k+j)]

We can use similar reasoning as above. The fraction of equity sold falls with c, which implies ∂α(I,c)
∂c

< 0. There are
two cases to consider: (1) V[qE,T−k+j + qD,T−k+j ] > V[qE,T−k + q̂J ] > Cov(qE,T−k + q̂J , qE,T−k+j + qD,T−k+j) and

(2) V[qE,T−k+j + qD,T−k+j ] > Cov(qE,T−k + q̂J , qE,T−k+j + qD,T−k+j) > V[qE,T−k + q̂J ].As a result ∂V[P |Equity]
∂c

< 0
only when α(I, c) is su�ciently large, which implies that there is a threshold investment level below which c = 0. Let

IE ≡ inf{I : ∂V[P |Equity]
∂c

≥ 0 when c = 0}. Note that in case (2), ∂V[P |Equity]
∂c

> 0 for all c and so cash is never used.

For low levels of I, the agent �nances the entire investment using debt or equity. Suppose I is low enough so that
∆D(F (I, 0)) = 0. Then the agent's proceeds if he �nances via debt is simply

[
∆V
2

]2 V[qE,T−k+j + qD,T−k+j ]. On
the other hand, α(I, 0) > 0 and V[qE,T−k + q̂J ] < V[qE,T−k+j + qD,T−k+j ]. Equity �nancing is clearly preferable;
moreover, as both functions are continuous (i.e., V[P |Debt] and V[P |Equity]) and monotonic (both are increasing until
I ≥ ID, I ≥ IE , respectively), there exists some I such that ∆D(F (I, 0)) > 0 and equity remains preferable.

In case (1), when I ≥ ID (I ≥ IE), ,
∂V[P |Debt]

∂c
= 0 ( ∂V[P |Equity]

∂c
= 0), and the variance is constant, given the choice

of �nancing � the agent uses cash to preserve the optimal smoothing across time. Moreover, the variance at this point
{I, c(I)}is the minimum variance in the �nancing problem without investment; the agent has optimally smoothed his
issuance across both time periods. That is, the variance given debt issuance is the

minδ V[δ (qE,T−k+j + qD,T−k+j) + (1− δ) (2qD,T−k)],

whereas, in the case of equity issuance, the variance when c ≥ 0 can be written

minδ V[δ (qE,T−k+j + qD,T−k+j) + (1− δ) (qE,T−k + q̂J)]

Because V[qE,T−k + q̂J ] > V[2qD,T−k], and Cov(qE,T−k + q̂J , qE,T−k+j + qJ) > Cov(qD,T−k, qE,T−k+j + qD,T−k+j), it is
clear that when δ is optimally chosen, the variance of the latter exceeds the former. As a result, there exists a threshold,
Ī, beyond which �nancing via debt is optimal.

In case (2), when cash is never utilized, as I →∞, both ∆D, ∆E → ∆V . Moreover,

V[P |Debt]→
[

∆V

2

]2

V[2qD,T−k] V[P |Equity]→
[

∆V

2

]2

V[qE,T−k + q̂J ]

Due to the di�ernce in information-driven uncertainty, when I is su�ciently high, V[P |Debt] < V[P |Equity]. Due to the
continuity and monotonicity of both functions, there exists a threshold beyond which debt is preferable when no cash is
utilized.

Proof of Proposition 9. We begin by verifying the �rst-best policy for the agent, given qD,T−k. The agent's expected
utility can be written:

U(y, ŷ, F ) ≡ DL(ŷ, F ) + qD,T−k∆D(ŷ, F ) + EL(y, F ) + E[qE,T |qD,T−k]∆E(y, F )− γ

2
V[qE,T |qD,T−k] (∆E(y, F ))2

which implies that

∂U(y, ŷF )

∂F
= (1−GL(F − ŷ)) + qD,T−k (GL(F − ŷ)−GH(F − ŷ)) + (GL(F − y)− 1)

+ E[qE,T |qD,T−k] (GH(F )−GL(F − y))− γV[qE,T |qD,T−k]∆E(y, F ) (GH(F )−GL(F − y))

Under perfect information, investors know the agent's type, i.e., ŷ = y:
∂U(y, ŷ = y, F )

∂F
= [GL(F − y)−GH(F )] [qD,T−k − E[qE,T |qD,T−k] + γV[qE,T |qD,T−k]∆E(y, F )] .
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If qD,T−k ≥ E[qE,T |qD,T−k], then ∂U(y,F )
∂F

is always positive, and so F ∗ = F̄ for all y. On the other hand, if qD,T−k <

E[qE,T |qD,T−k], then the agent optimally sets ∂U(y,y,F )
∂F

= 0 as shown in equation (14). As y increases, the agent wants
to hold ∆E(y, F ) constant, which requires:

∂∆E(y, F )

∂y
+
∂∆E(y, F )

∂F

∂F

∂y
= 0 =⇒

∂F

∂y
=

1−GL(F − y)

GH(F )−GL(F − y)
< 0

Next, we establish conditions for di�erentiability using Mailath and von Thadden (2013). Y, F ≡ [0, F̄ ] if F̄ <∞, F ≡
[0, F̄ ) if F̄ = ∞ are intervals on R. The �rst-best contracting problem has a unique solution in both cases. The utility
function is concave along the �rst-best path:

∂2U(y, ŷ = y, F )

∂F 2
= − [GL(F − y)−GH(F )]2 [γV[qE,T |qD,T−k]]

+ [qD,T−k − E[qE,T |qD,T−k] + γV[qE,T |qD,T−k]∆E(y, F )] [gL(F − y)− gH(F )]

If qD,T−k < E[qE,T |qD,T−k], then along the �rst-best path ∂U
∂F

= 0 and so this simpli�es to

∂2U(y, y, F (y))

∂F 2
= − [GL(F − y)−GH(F )]2 [γV[qE,T |qD,T−k]] < 0.

Consider now the case when qD,T−k > E[qE,T |qD,T−k], If F̄ =∞, then because in the limit as F →∞, gL(F−y) < gH(F ),

then ∂2U(y,y,F (y))

∂F2 < 0 in the limit as well. Alternatively, when F̄ is �nite, by FOSD, it must be that gL(F̄ − y) < gH(F̄ ).

Moreover, in both cases, if ∂
2U(y,y,F (y))

∂F2 ≥ 0, then it must be that[
qD,T−k − E[qE,T |qD,T−k] +

γ

2
V[qE,T |qD,T−k]∆E(y, F )

]
6= 0

and ∃k s.t. |∂U(y, y, F )

∂F
| > k > 0

Finally, we can apply Theorem 3.5 of Mailath and von Thadden (2013):

∂2U(y, ŷ = y, F (y))

∂F∂y
= −gL(F − y)

[
1− E[qE,T |qD,T−k] + V[qE,T |qD,T−k]∆E(y, F )

]
+ (GH(F )−GL(F − y)) (1−GL(F − y)) γV[qE,T |qD,T−k]

=⇒
∂2U(y, ŷ = y, F (y))

∂F∂y
< 0

∂U(y, ŷ, F )

∂ŷ
= GL(F − ŷ) (1− qD,T−k) > 0

and ∂2U(y,ŷ=y,F (y))
∂F∂ŷ

= 0, which implies that the separating equilibrium follows

∂f(y)

∂y
=

− [1−GL(f(y)− y)] [1− qD]

[GL(f(y)− y)−GH(f(y))] [(qD − E[qE,T |qD,T−k]) + γ∆E(y, FFB)V[qE,T |zT−k]]
(27)

Proof of Proposition 10. We begin by verifying the �rst-best policy for the agent. When µz = zT−k = 0,
E[qD,T−k|zT−k] = E[qE,T |zT−k], and so the agent maximizes:

U(y, ŷ, F ) ≡ −γ
2

[
V[qE,T |zT−k]∆E(y, F )2 + V[qD,T−k|zT−k]∆D(ŷ,F )2 + 2∆E(y, F )∆D(ŷ,F )Cov(qE,T , qD,T−k|zT−k)

]
which implies that

∂U(y, ŷ, F )

∂F
= −γ (GL(F − ŷ)−GH(F )) [∆D(ŷ,F )V[qD,T−k|zT−k] + ∆E(y, F )Cov(qE,T , qD,T−k|zT−k)]

− γ (GH(F )−GL(F − y)) [∆E(y, F )V[qE,T |zT−k] + ∆D(ŷ, F )Cov(qE,T , qD,T−k|zT−k)]

Under perfect information, investors know the agent's type, i.e., ŷ = y, and can be written:

∂U(y, ŷ = y, F )

∂F
= −γ [GL(F − y)−GH(F )]

[
∆D(y, F )

(
V[qD,T−k|zT−k]− Cov(qE,T , qD,T−k|zT−k)

)]
+ γ [GL(F − y)−GH(F )]

[
∆E(y, F )

(
V[qE,T |zT−k]− Cov(qE,T , qD,T−k|zT−k)

)]

50



We know that V[qE,T |zT−k] > V[qD,T−k|zT−k]. As a result, when V[qD,T−k|zT−k] < Cov(qE,T , qD,T−k|zT−k), then
∂U(y,F )
∂F

is always positive, and so F ∗ = F̄ for all y. On the other hand, if V[qD,T−k|zT−k] < Cov(qE,T , qD,T−k|zT−k),

then the agent optimally sets ∂U(y,y,F )
∂F

= 0 as shown in equation (16). As y increases, the agent wants to hold the ratio
∆E(y,F )
∆D(y,F )

constant, which requires:

∆D(y, F )

[
∂∆E(y, F )

∂y
+
∂∆E(y, F )

∂F

∂F

∂y

]
−∆E(y, F )

[
∂∆D(y, F )

∂y
+
∂∆D(y, F )

∂F

∂F

∂y

]
= 0

∂F

∂y
=

∆D(y,F )
∆V (y)

−GL(F − y)

GH(F )−GL(F − y)

Next, we establish conditions for di�erentiability using Mailath and von Thadden (2013). Y, F ≡ [0, F̄ ] if F̄ <∞, F ≡
[0, F̄ ) if F̄ = ∞ are intervals on R. The �rst-best contracting problem has a unique solution in both cases. The utility
function is concave along the �rst-best path:

∂2U(y, ŷ = y, F )

∂F 2
= −γ [GL(F − y)−GH(F )]2

[
V[qD,T−k|zT−k] + V[qE,T |zT−k]− 2Cov(qE,T , qD,T−k|zT−k)

]
− [gL(F − y)− gH(F )]γ

[
∆D(y, F )

(
V[qD,T−k|zT−k]− Cov(qE,T , qD,T−k|zT−k)

)]
+ [gL(F − y)− gH(F )]γ

[
∆E(y, F )

(
V[qE,T |zT−k]− Cov(qE,T , qD,T−k|zT−k)

)]
If V[qD,T−k|zT−k] > Cov(qE,T , qD,T−k|zT−k), then along the �rst-best path ∂U

∂F
= 0 and so this simpli�es to

∂2U(y, y, F (y))

∂F 2
= −γ [GL(F − y)−GH(F )]2 [V[qD,T−k|zT−k] + V[qE,T |zT−k]− 2Cov(qE,T , qD,T−k|zT−k)] < 0.

Consider now the case when V[qD,T−k|zT−k] < Cov(qE,T , qD,T−k|zT−k), If F̄ =∞, then because in the limit as F →∞,

gL(F − y) < gH(F ), then ∂2U(y,y,F (y))

∂F2 < 0 in the limit as well. Alternatively, when F̄ is �nite, by FOSD, it must be that
gL(F̄ − y) < gH(F̄ ).

Moreover, in both cases, if ∂
2U(y,y,F (y))

∂F2 ≥ 0, then it must be that

[∆D(y, F ) (V[qD,T−k|zT−k]− Cov(qE,T , qD,T−k|zT−k))−∆E(y, F ) (V[qE,T |zT−k]− Cov(qE,T , qD,T−k|zT−k))] 6= 0

and ∃k s.t. |∂U(y, y, F )

∂F
| > k > 0

Finally, we can apply Theorem 3.5 of Mailath and von Thadden (2013):

∂2U(y, ŷ = y, F )

∂F∂y
= −γ (GL(F − y)−GH(F )) (1−GL(F − y)) [V[qE,T |zT−k]− Cov(qE,T , qD,T−k|zT−k)]

− γ (gL(F − y)) [∆E(y, F )V[qE,T |zT−k] + ∆D(ŷ, F )Cov(qE,T , qD,T−k|zT−k)] < 0

∂U(y, ŷ, F )

∂ŷ
= γ (GL(F − ŷ)) [V[qD,T−k|zT−k]∆D(ŷ,F ) + ∆E(y, F )Cov(qE,T , qD,T−k|zT−k)] > 0

∂2U(y, ŷ, F )

∂ŷ∂y
= −γ (GL(F − ŷ))Cov(qE,T , qD,T−k|zT−k) (1−GL(F − y)) < 0

Taken together, this implies that the separating equilibrium follows

∂f(y)

∂y
=

−GL(f(y)−y)
[GL(f(y)−y)−GH (f(y))]

[
E[qD,T−k|zT−k] + γ

(
V[qD,T−k|zT−k]∆D(y, f(y)) + Cov(qD,T−k, qE,T |zT−k)∆E(y, f(y))

)][
∆E(y, f(y))

(
V[qE,T |zT−k]− Cov(qD,T−k, qE,T |zT−k)

)
−∆D(y, f(y))

(
V[qD,T−k|zT−k]− Cov(qD,T−k, qE,T |zT−k)

)]
(28)

Proof of Proposition 11. We can write the variance of q̃D when investors are unable to observe the price of equity in
terms of τ+, the di�erence in the two precisions:

VEL0 [q̃D] =

1
τz

(τi,D(1 + τn))2 + τi,D
(

2 + 1
τn

+ τn
)

+ τ+(1 + τn)2
[

1
τn

+
τ++2τi,D

τz

]
(τz + (τi,D + τ+)(1 + τn)) (1 + τz + (τi,D + τ+)(1 + τn))

In Proposition 3, we showed that ∂V0[ ˜qD ]
∂τi,D

> 0, which implies that if we can �nd a γ such that V0[q̃D] is higher without

cross-market learning, it will also be higher for any γ above this threshold.
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VCM0 [q̃D] =

1
τz

(τi,D(1 + τn))2 +
(
τi,D
τn

+ 2τi,D + τD
)

+ τE
[

2τi,D(1+τn)+τE
τz

+ 1
]

(1 + τz + τi.D(1 + τn) + τE) (τz + τi.D(1 + τn) + τE)

If τ+ = τi,E
τn

(1+τn)
, then the denominator in both expressions is the same. As a result, if τ+ = τi,E

τn
(1+τn)

(and using the

observation that τi,E = τi,D in equilibrium), VEL0 [q̃D] > VCM0 [q̃D] if

τi,Dτn

[
2τi,D(1 + τn) + τi,Dτn

τz
+ 1

]
< τi,D

τn
(1 + τn)

(1 + τn)2

[
1

τn
+
τ+ + 2τi,D

τz

]
τi,Dτn < τi,D(1 + τn)

As this always holds, it is clear that τ+is a su�cient lower bound, not a necessary one. Note that the same threshold
holds for both the debt and equity markets (which are symmetric in this equilibrium).

We can write the covariance of q̃D, q̃E in the absence of cross-market learning, with the knowledge that in both cases,
investors in each market will obtain signals of the same precision:

CovEL(q̃D, q̃E) =

1
τz

(τi(1 + τn))2 + τ+(1+τn)2

τz

(
2τi + τ+

)
(τz + (τi + τ+)(1 + τn)) (1 + τz + (τi + τ+)(1 + τn))

Note that, as before, we can equate the denominators if τ+ = τi
τn

1+τn
,

CovCM (q̃D, q̃E) =

1
τz

(τi(1 + τn))2 + τiτn
τz

(2τi(1 + τn) + τiτn) + 2τi(1 + τn)

ψ(1 + ψ)
,

and so after substitution, we can compare the numerators:

τiτn (2τi(1 + τn) + τiτn) < τiτn (2τi(1 + τn) + τiτn) + 2τi(1 + τn)τz

At this level of τ+, the covariance with cross-market learning must be higher. However, combining everything, we can
write:

VEL[pE + pD]− VCM [pE + pD] =

(
∆V 2

8π

)
2τi (1− (1 + τn)τz)

ψ(1 + ψ)

For su�ciently low τz, therefore, VEL[pE + pD] > VCM [pE + pD].

Proof of Lemma 8 Let si,T−k = zT−k+l+εi where l ≥ 1 and εi ∼ N
(

0,
(
τ Ii,T−k

)−1
)
. Then ψPET−k ≡ τz

[∑l
j=1 ρ

2(j−1)
]−1

+

τ Ii,T−k + τPE,T−k and

qPE,T−k = Φ

 (1− ρ)µz
∑k
j=1 ρ

(j−1) + ρkzT−k + ρ(k−l)
(

(τIi,T−k+τPE,T−k)(
∑l
j=1 ρ

j−1eT−k+l−j+1+uT−k/
√
τi,T−k)

ψPET−k

)
√

1 + 1
τz

∑k−l
j=1 ρ

2(j−1) + ρ2(k−l)(ψPET−k)−1

 .

V[qPE,T−k|zT−k,P] = φ (E[ ˜qPE,T−k|zT−k,P])2 V[ ˜qPE,T−k|zT−k,P]

φ (E[ ˜qPE,T−k|zT−k,P])2 =
1

2π
exp

−
[
(1− ρ)µz

∑k
j=1 ρ

(j−1) + ρkzT−k
]2

1 + 1
τz

∑k−l
j=1 ρ

2(j−1) + ρ2(k−l)(ψPET−k)−1



V[ ˜qPE,T−k|zT−k,P] =

ρ2(k−l)
[

(τi,T−k+τE,T−k)

ψPE
T−k

]2 [∑l
j=1 ρ

2(j−1)

τz
+ 1

τE,T−k

]
1 + 1

τz

∑k−l
j=1 ρ

2(j−1) + ρ2(k−l)(ψPET−k)−1

From the proof of Lemma 7, we know that the variance in the liquid market can be written:

V[qE,T−k|zT−k,P] = φ (E[ ˜qE,T−k|zT−k,P])2 V[ ˜qE,T−k|zT−k,P]

φ (E[ ˜qE,T−k|zT−k,P])2 =
1

2π
exp

−
[
(1− ρ)µz

∑k
j=1 ρ

(j−1) + ρkzT−k
]2

1 + τ−1
z

∑k−1
j=1 ρ

2(j−1) +
∑k−1
j=1 ρ

2(j−1)ψPT−j + ρ2(k−1)
(
ψET−k

)−1



V[ ˜qE,T−k|zT−k,P] =

ρ2(k−1)

[
(τi,T−k+τE,T−k)

ψE
T−k

]2 [
1
τz

+ 1
τE,T−k

]
1 + τ−1

z

∑k−1
j=1 ρ

2(j−1) +
∑k−1
j=1 ρ

2(j−1)ψPT−j + ρ2(k−1)
(
ψET−k

)−1
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We begin by showing that the denominator of V[ ˜qE,T−k|zT−k,P] exceeds the denominator of V[ ˜qPE,T−k|zT−k,P]:

τ−1
z

k−1∑
j=k−l+1

ρ2(j−1) +

k−1∑
j=k−l+1

ρ2(j−1)ψPT−j + ρ2(k−1)
(
ψET−k

)−1

+

k−l∑
j=1

ρ2(j−1)ψPT−j >

τ−1
z

k−1∑
j=k−l+1

ρ2(j−1) +

k−1∑
j=k−l+1

ρ2(j−1)ψPT−j + ρ2(k−1)
(
ψET−k

)−1

>

k∑
j=k−l+1

ρ2(j−1)
(
ψET−j

)−1

=

[∑k
j=k−l+1 ρ

2(j−1)
]

τz + τi + τE
≥[∑k

j=k−l+1 ρ
2(j−1)

]
τz +

[∑l
j=1 ρ

2(j−1)
] [
τ Ii,T−k + τPE,T−k

] = ρ2(k−l)(ψPET−k)−1

The second inequality arises because τ−1
z +ψPT−j >

(
ψET−j

)−1
. Next we show that the numerator of V[ ˜qPE,T−k|zT−k,P]

exceeds the numerator of V[ ˜qE,T−k|zT−k,P]:

ρ2(k−l)
[

(τi,T−k + τE,T−k)

ψPET−k

]2
[∑l

j=1 ρ
2(j−1)

τz
+

1

τE,T−k

]
≥

ρ2(k−1)

[
(τi,T−k + τE,T−k)

ψET−k

]2 [
1

τz
+

1

τE,T−k

]
because for all l ≥ 1 ψPET−k ≤ ψET−k, ρ2(k−l) ≥ ρ2(k−1) (as long as 0 < ρ ≤ 1), and

∑l
j=1 ρ

2(j−1) ≥ 1, where the inequalities
are strict if l > 1.
Note however, that if |E[zT |zT−k]| > 0, then φ (E[ ˜qPE,T−k|zT−k,P])2 < φ (E[ ˜qE,T−k|zT−k,P])2. Thus, as long as
|E[zT |zT−k]| is su�ciently low, it is clear that V[qPE,T−k|zT−k,P] > V[qE,T−k|zT−k,P].
Finally, note that the numerator of V[ ˜qPE,T−k|zT−k,P] is increasing in l. It is straightforward to show that the denom-
inator is falling in l. Let l̂ > l. Then,

1 +
1

τz

k−l∑
j=1

ρ
2(j−1)

+

[∑k
j=k−l+1 ρ

2(j−1)
]

τz +
[∑l

j=1 ρ
2(j−1)

] [
τI
i,T−k + τPE,T−k

] >
1 +

1

τz

k−l̂∑
j=1

ρ
2(j−1)

+
1

τz

k−l∑
j=k−l̂+1

ρ
2(j−1)

+

[∑k
j=k−l+1 ρ

2(j−1)
]

τz +
[∑l̂

j=1 ρ
2(j−1)

] [
τI
i,T−k + τPE,T−k

] =

1 +
1

τz

k−l̂∑
j=1

ρ
2(j−1)

+

 1

τz
−

1

τz +
[∑l̂

j=1 ρ
2(j−1)

] [
τI
i,T−k + τPE,T−k

]
 k−l∑
j=k−l̂+1

ρ
2(j−1)

+

[∑k
j=k−l̂+1

ρ2(j−1)
]

τz +
[∑l̂

j=1 ρ
2(j−1)

] [
τI
i,T−k + τPE,T−k

] >

1 +
1

τz

k−l̂∑
j=1

ρ
2(j−1)

+

[∑k
j=k−l̂+1

ρ2(j−1)
]

τz +
[∑l̂

j=1 ρ
2(j−1)

] [
τI
i,T−k + τPE,T−k

]
As a result, when investors' signals are more forward-looking, they generate more price uncertainty as long as |E[zT |zT−k]|
is su�ciently low.

B Generalizations

B.1 N States

We generalize the distribution of cash �ows to accommodate N > 2 states as follows. In each state, the cash �ow, x, is
drawn from a known distribution, Gj , where j ∈ 1, 2, ..., N . Let the probability of each state, s, be written as

P[s = j] = aj + bjq

where q ≡ Φ(z), Φ(·) is the standard Gaussian CDF, and z ∼ N (µz, τ
−1
z ). The sets of high (H) and low (L) states,

H ≡ {j : bj ≥ 0 } L ≡ {j : bj < 0}, are de�ned in a manner which makes them analogous to the two-state setup in the
main text; the probability of each state j ∈ H is increasing in the realization of z, while the likelihood of each state j ∈ L

53



is falling. Insuring that this is a well-de�ned probability measure (i.e., 0 ≤ P[s = j] ≤ 1 ∀j , and
∑
j P[s = j] = 1),

requires ∑
j

aj = 1,
∑

bj = 0,
∑
j∈H

bj ≤ 1, and a ≥ 0 , 0 ≤ aj + bj ≤ 1 ∀j.

Let Vj ≡ E[x|x ∼ Gj ], VH ≡
∑
j∈H bjVj , and VL ≡

∑
j∈L bjVj . Then the expected value of the asset at time-1 can

be written

E1[x] =
∑
j

ajVj + q [(VH − VL)] , (29)

Note the similarities between equation (29) and (1).77 As E[q] tends to zero, the expected value of the asset tends to∑
j ajVj instead of VL. Unlike the model analyzed in the main text, the likelihood of the high states do not necessarily

tend to zero with E[q], and so cannot be neglected. However, because all agents know this (and agree on the value of∑
j ajVj), this modi�cation leaves unchanged the incentive to acquire information and does not alter the variance of the

price received by the agent. If we further assume an equivalent statement about �rst-order stochastic dominance with
respect to the aggregate �high� and �low� states, this generalization leaves unchanged our analysis.

B.2 Integrated Markets

We assume now that investors can freely trade in both markets simultaneously � they do not need to choose in which
market to trade. Liquidity shocks remain normally-distributed and independent,(

ud
ue

)
∼ N

([
0
0

]
,

[
τ−1
d 0
0 τ−1

e

])
,

but may have di�erent variances, i.e., τd 6= τe. We begin by assuming that the precision of investors' private signal, τi, is
exogenously given and µz = 0. Given that τi,E = τi,D (the investors in both markets are the same), ψE = ψD = ψ, and

φ(E0[q̃D])2 =
1

2π
exp

(
−µ2

z
ψ

1 + ψ

)
= φ(E0[q̃E ])2

V0[qD] = φ(E0[q̃D])2V0[q̃D] V0[qE ] = φ(E0[q̃E ])2V0[q̃E ]

V0[ ˜qD] = V0[q̃E ] +
τi(

1
τd
− 1

τe
)

ψ(1 + ψ)

Thus, if τd > τe, there is less uncertainty about liquidity demand for debt and V0[qD] < V0[qE ]. The inequality �ips
ifτd < τe. Moreover,

Cov(qE , qD) = φ(E0[q̃D])φ(E0[q̃E ])Cov(q̃E , q̃D)

Cov(q̃E , q̃D) = V0[q̃E ]−
τi
τe

ψ(1 + ψ)

= V0[ ˜qD]−
τi
τd

ψ(1 + ψ)

which implies that there is always a diversi�cation bene�t to issuing in both markets for the agent: V0[qD], V0[qD] >
Cov(qE , qD). From the proof of Proposition 3, this implies that the optimal face value of debt, F ∗ solves the following
equation:

∆D(F ∗)

∆E(F ∗)
=

V0[qE ]− Cov(qD, qE)

V0[qD]− Cov(qD, qE)
(30)

If τd < τe, then the agent issues less information-sensitive debt than equity, i.e., 0 < ∆D(F ∗) < ∆E(F ∗), and if
τd > τe, ∆D(F ∗) > ∆E(F ∗) > 0. The intuition matches that presented in the main model. Taking the debt market as
an example, more private learning (↑ τi) generates uncertainty, which induces the agent to issue less information-sensitive
debt. Similarly, more certainty about liquidity demand for debt (↑ τd), which reduces price uncertainty, induces the agent
to issue more information-sensitive debt.

77If we match coe�cients and set bH = 1 = −bL, aH = 0, aL = 1, Equation (29) collapses to (1).
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Suppose instead that µz 6= 0 which, as discussed in Appendix B.4, implies that, in general, E[qD] 6= E[qE ]. Conse-
quently, the agent can alter his expected revenue through his choice of capital structure. As a result, he is no longer just
concerned with minimizing the variance of his proceeds. From the proof of Lemma 4,

E0[qD] = Φ

 ψµz√
ψ(1 + ψ) + (ψ − τz)2τ−1

z + (τi + τD)2τ−1
D + τE

 ≡ Φ(q̄Dµz)

E0[qE ] = Φ

 ψµz√
ψ(1 + ψ) + (ψ − τz)2τ−1

z + (τi + τE)2τ−1
E + τD

 ≡ Φ(q̄Eµz)

As before, if τd > τe, there is more certainty about the price of debt. With it a little simpli�cation, it is easy to see
that this implies q̄D > q̄E . As a result, when µz > (<) 0, then E0[qD] > (<)E0[qE ].78 Of course, the inequalities �ip
when τd < τe.

From Appendix B.4, the agent's �rst-order condition can be written:

E0[qD]− E0[qE ] = γ [∆D(F ∗) (V0[qD]− Cov(qD, qE))−∆E(F ∗) (V0[qE ]− Cov(qD, qE))]

Suppose τd > τe, and let F0 be the solution to equation (30) so that ∆D(F0) > ∆E(F0) . When µz > 0, issuing
debt becomes even more attractive: it has lower variance and a higher expected price, and so F ∗ > F 0. 79 On the
other hand, when µz < 0, the agent is torn between choosing a security with low price/low uncertainty (debt) and high
price/high uncertainty (equity). As a result, he tilts his issuance towards equity, i.e., F ∗ < F 0. E�ectively, when µz > 0,
he decreases the discount he receives for the asset (and lowers the uncertainty of his proceeds), whereas when µz > 0, he
increases the premium he receives (while increasing the uncertainty of his proceeds).

Finally, we consider the e�ect of information acquisition; as in the main text, we return to our assumption that
µz = 0. When investors can trade both securities, they choose τi to maximize:

φ(0) {∆DE0 [(q̃i − q̃D)|q̃i > q̃D] + ∆EE0 [(q̃i − q̃E)|q̃i > q̃E ]} − C(τi)

In equilibrium, the optimal τi sets

φ(0)

{
∆D

∂E0 [(q̃i − q̃D)|q̃i > q̃D]

τi
+ ∆E

∂E0 [(q̃i − q̃E)|q̃i > q̃E ]

∂τi

}
= C′(τi)

As equation (19) shows,

∂E0 [(q̃i − q̃D)|q̃i > q̃D]

τi
=
∂E0 [(q̃i − q̃E)|q̃i > q̃E ]

∂τi

√√√√ (1 + 1
τe

)

(1 + 1
τd

)

When τd = τe, E0 [(q̃i − q̃D)|q̃i > q̃D] = E0 [(q̃i − q̃E)|q̃i > q̃E ]. As a result, the precision chosen is independent of
the capital structure. When τd > τe, V0[qD] < V0[qE ] and so the agent sets ∆D > ∆E. As F increases, however, this

induces agents to choose a more precise signal (because ∂E0[(q̃i− ˜qD)|q̃i> ˜qD ]
τi

> ∂E0[(q̃i−q̃E)|q̃i>q̃E ]
∂τi

); this o�sets some of the

bene�t from setting ∆D > ∆E, however, because both V0[qD] and V0[qE ] are increasing in τi. As a result, the agent
must trade-o� the two e�ects when choosing the optimal level of debt.

B.3 No Commitment

We now allow the agent to decide whether or not to sell the �rm, after observing the market-clearing prices. He has two
options: sell the entire �rm for pE + pD, or hold onto the �rm and sell it at time-1 for E1[x]. His expected utility from
waiting to sell until time-1, given pE , pD:

E[E1[x]|pD, pE ]− γ

2
V[E1[x]|pD, pE ]− (pE + pD)

The agent is able to update his beliefs about z by observing the price of equity and the price of debt. We can
compare the sales price, pE + pD, to E[E1[x]|pD, pE ]:

78The discount and premium e�ects are discussed in detail in Appendix B.4.
79With integrated markets, the RHS does not depend upon µz. The e�ect of µz on the LHS is non-monotonic. In the

limit, as µz → ∞, E0[qD] − E[qE ] → 0. As a result, while F ∗ is initially increasing in µz it eventually returns to the
same level as when µz = 0.
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pE + pD = Vl + Φ

(
τzµz + (τi,D + τD)sD + τEsE√

ψD(1 + ψD)

)
∆D + Φ

(
τzµz + τDsD + (τi,E + τE)sE√

ψE(1 + ψE)

)
∆E

6= VL + Φ

(
τzµz + τDsD + τEsE√

ψ(1 + ψ)

)
∆V = E[E1[x]|pD, pE ]

The agent's expected value of the asset will not in general, equal, the market value of the �rm. First, the agent's
information set contains only the two public signals; investors in each market have a private signal as well. As a result,
the agent places more weight on the public signals in forming his expectation of the asset's value.80 Second, the marginal
investor in the debt market will not, in general, agree with the marginal investor in the equity market about the likelihood
of each state. Finally, though he updates his beliefs using prices, the agent knows that the market value of the �rm is a
noisy signal of the true z.

As a result, it is insu�cient to assume that the agent will always sell at time-1 simply based on his expected valuation.
However, the agent is risk-averse, and so still needs to consider the remaining uncertainty if he waits until time-1 to sell:

V[E1[x]|pD, pE ] = ∆V 2V (Φ (q) |pD, pE) .

Since the variance of Φ(q) 6= 0, with su�ciently high risk-aversion (γ), the investor will always choose to sell at time-
0, even after observing prices.81 Furthermore, when µz = 0, increasing γ does not a�ect the agent's optimal issuance
decision.

B.4 Optimal Issuance when µz 6= 0

We return to the static issuance model of Section 2 and assume now that µz 6= 0. We take the precisions of debt and
equity investors' private signals as given. We assume that |µz| is su�ciently small and τn is su�ciently large, so that the
conditions speci�ed in the proofs of Lemmas 3 and 4 hold.

We begin by providing intuition for the results of Lemma 4 when µz 6= 0. When the agent forms expectations
about fundamentals (q), he impounds his prior uncertainty (V0[z]) into his expectation. On the other hand, when the
agent forms expectations about the price (qD), he must impound both (i) the marginal investor's posterior uncertainty
about fundamentals (V[z|si, sD, sE ]) as well as (ii) his uncertainty about the beliefs of the marginal investor (V0[E[z|si =
sD, sD, sE ]]).82 Notably, the identity of the marginal investor is not �xed. Instead, he is identi�ed by the relationship
between his private signal and the price signal (si = sD). This generates additional variance about the marginal investor's
beliefs when compared to the beliefs of a given investor: V0[E[z|si = sD, sD, sE ]] > V0[E[z|si, sD, sE ]].83

Taken together, and by the law of total variance,V[z|si, sD, sE ] + V0[E[z|si = sD, sD, sE ]] > V0[z]. Suppose µz > 0.
This creates what Albagli et al. (2015) refers to as �downside risk� due to the asymmetric e�ect of information about z:
bad news (z < µz) has a larger e�ect on the value of the asset than good news (z > µz). Downside risk in combination
with the additional variance implies that E0[qD] < E0[q]. Moreover, when τi,D > τi,E , the additional variance generated
is larger in the debt market. As a result, E0[qD] < E0[qE ] < E0[q].

We assume that the agent has chosen to sell the �rm at time-0. As a result, his objective is to choose the face value
of debt, F , to maximize:

U(F )= E[pD(F ) + pE(F )]− γ

2
V0[pE(F ) + pD(F )]

As was argued in the proof of Proposition 3, it is su�cient for the agent to consider values of F which satisfy F ≤ F ≤ F̄ .
It is straightforward to show that

∂U(F )

∂F
= (GH(F )−GL(F )) {E0[qD]− E0[qE ]− γ [∆D(F ) (V0[qD]− Cov(qD, qE))−∆E(F ) (V0[qE ]− Cov(qD, qE))]} (31)

80In equilibrium, the marginal investor's private signal is the same as his own-market public signal and so he places
more weight on his own-market public signal than the agent.

81The variance is non-zero as long as investors in neither market learn z perfectly.
82He must account for the former as well because the marginal investor will have already accounted for it in setting

the price.
83While a similar e�ect (i.e., the additional variance generated by market clearing) is present in standard REE models

(e.g., CARA-normal), the relationship between information and fundamentals is generally linear, and therefore symmetric.
As a result, there is no wedge. This is similar to the case when µz = 0.
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Assume that τi,D > τi,E .
84 Let F0 be the face value of debt which minimizes the variance of the agent's proceeds, i.e.,

the optimal issuance when µz = 0. Because V0[qD] > V0[qE ], the optimal level of debt sets ∆E(F0) > ∆D(F0).

When µz 6= 0, the agent must also account for the expected di�erence in prices: E0[qD]− E0[qE ]. If µz > 0, there's
�downside risk�, and so when τi,D > τi,E , E0[qD] < E0[qE ]. Equity is expected to sell for a higher price and there's lower
uncertainty about what that price will be. The more debt issued, the lower the agent's expected revenue, and so the
agent optimally sets F ∗ < F0. On the other hand, when µz > 0, there's �upside risk� which implies that the debt market,
which has more uncertain beliefs about z, also has the higher expected price: E0[qD] > E0[qE ]. As a result, the agent
tilts his portfolio towards debt, i.e., F ∗ > F0.

The extent to which the agent shifts his debt issuance as a result of any di�erence in expected revenue is, of course,
a function of his risk-aversion. If the agent were risk-neutral, he would only issue an information-sensitive security in the
market with the highest price. When τi,D > τi,E , this implies that he would set ∆V = ∆D when µz < 0, and ∆V = ∆E
when µz > 0. With su�cient risk-aversion, this is no longer be the case, as the agent becomes willing to reduce his
expected proceeds in order to minimize his uncertainty.

Albagli et al. (2015) consider a closely-related problem as an application of their model. A risk-neutral agent sells
claims to a future cash �ow into two segmented markets. Investors in each market have imperfect information about
the underlying cash �ow. They �nd that the optimal policy is to issue debt, which is exposed to �downside risk� to the
market with less information, and equity, which is exposed to �upside risk�, to the market with more information. When
F is chosen optimally, this allows the agent to maximize the premium received for equity while minimizing the discount
he receives for his debt.

In our setting, such a solution is no longer possible. Here, investors have imperfect information about the probability
of each state, and therefore di�er in their beliefs about the expected cash �ow. Because the non-linearity is found in the
probability of each state, any contingent claim on the underlying cash �ow (including debt and equity) is exposed to the
same asymmetry. For instance, when µz > 0, both debt and equity are always exposed to downside risk, as long as both
are information-sensitive. As a result, both are discounted, relative to the agent's expectation of fundamentals. On the
other hand, when µz < 0, he expects both debt and equity to sell at a premium.

However, the agent can still take advantage of di�erences in the informational characteristics of each market. When
µz > 0 and τi,D > τi,E , for instance, he can reduce the discount he expects to receive by issuing more information-sensitive
equity. On the �ip side, if µz < 0, he increases his expected premium by issuing more information-sensitive debt.

Moreover, these premia/discounts also impact the agent's original decision as to whether or not to sell the �rm at
time-0. For example, as discussed in Section 2, if there's too much uncertainty about the price he'll receive from issuing
debt and equity, the agent will optimally wait until time-1 to sell the asset. Now, in addition, the agent expects to receive
either a premium (µz < 0) or a discount (µz > 0) if he sells at time-0. For example, when µz > 0, even if the agent
would like to sell because it lowers his uncertainty, he may choose not to do so because he expects to receive a lower
price for the �rm than if he waited until time-1.

C Extensions

C.1 Extensions - Static Issuance

C.1.1 Static Issuance given initial capital structure

We assume that, prior to time-0, the agent has (i) sold a fraction 1−α of the �rm's equity and (ii) issued debt with face
value F . If we assume he has maintained control rights, the agent will choose how much additional debt (F0) to issue to
maximize his utility from selling his claim to the �rm's cash �ow:

maxF0 E0[α(pE + pD,0)]− γ

2
V0[α(pE + pD,0)].

If we let pE represent the price of one share, then the agent would receive αpE for his stake. Similarly, the agent
receives α of the new debt proceeds (sold at pD,0) � the remaining cash is distributed to the additional equityholders.
Because α is a known constant at time-0, and under the assumption that µz = 0, this reduces to minimizing V0[pE+pD,0]
� which is seemingly identical to the problem solved above. Now, however, we must consider whether (i) other owners of
the �rm would like to sell their stake and (ii) whether the previously issued debt is traded or privately held. We assume
the new debt is subordinated to any existing debt. We will focus on the setting in which equity and debt investors exist
in equal measure and cannot choose in which market to invest.85

84When τi,D < τi,E , the argument below is �ipped, with debt replacing equity and vice versa.
85It is reasonable that investors choose their market prior to the initial issuance of equity and/or debt, and so remain

�xed at this time.
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Consider the simplest case � when the agent and all existing owners choose to sell their equity. If the existing debt
is privately held and senior to any new debt, then Proposition 5 holds. The agent chooses F ∗0 to set the information
sensitivity of the new debt, not the total debt, equal to the information sensitivity of equity:

∆D0(F, F ∗0 ) = ∆E(F + F ∗0 ) < ∆D0(F, F ∗0 ) + ∆D(F, F ∗0 ). (32)

Consider the expected utility of debt and equity investors:

EUD = (∆D0)E [(qi − qD)|(qi > qD)] EUE = (∆E)E0 [(qi − qE)|(qi > qE)]

Setting the information-sensitivity in each market equal also perfectly balances the information-driven uncertainty, be-
cause in equilibrium τi,D = τi,E . On the other hand, suppose debt investors can also trade in the previously issued debt.
If their signal exceeds that of the marginal debt investor, they will want to purchase both bonds. As a result,

EUD = (∆D + ∆D0)E [(qi − qD)|(qi > qD)] ,

leading debt investors to acquire a more precise signal than otherwise. This causes V0[qD,0] to exceed V0[qE ]; to
compensate, the agent will issue less information-sensitive debt at time-0. Similarly, if the other owners choose not to
participate in the equity issuance, investors will have the opportunity to purchase a smaller stake:

EUE = (α∆E)E0 [(qi − qE)|(qi > qE)] ,

Since equity investors choose to learn less, the volatility of the equity price falls. To take advantage of this, the agent
will issue more information-sensitive equity. We summarize these results in the following corollary:

Corollary 2. The optimal value of debt issued at time-0 is decreasing in (i) the fraction of the existing debt issue which
is actively traded and (ii) the fraction of equity owners who choose not to sell their shares.

C.1.2 Costly Liquidation/Dividend Recapitalization

The model implicitly assumes that equity owners will receive the proceeds from any debt issuance � any capital raised
does not stay within the �rm � which closely matches the process of dividend recapitalization. The economic motivation
for a dividend recap in the model is similar to the justi�cation provided by private equity �rms: issuing debt and using the
proceeds to pay a special dividend lowers the uncertainty faced by equityholders. As has been pointed out in discussions
of dividend recaps, issuing more debt increases the likelihood of default. In the model, however, this leaves the expected
value of the entire �rm una�ected.

Missing, however, are any potential costs in bankruptcy or costs of �nancial distress, a point of emphasis when the
procedure's social value is discussed. It is straightforward to modify the assumptions of Section 2 so that debtholders
receive only a fraction δ < 1 of the cash �ow if x < F , akin to partial recovery.86 Issuing more debt increases the
likelihood of default, which lowers the expected value of the �rm.

Suppose the asset is owned entirely by the agent, as in our static model. Critically, the agent maximizes the expected
value of the asset subject to the cost of uncertainty, i.e., the owner of the asset fully internalizes the cost of partial recovery.
If a dividend recapitalization is chosen, it is because it maximizes his utility, even as it lowers the expected value of the
�rm. Under the simplifying assumption that any trading gains/losses by �nancial market participants are welfare-neutral,
a social planner, constrained to choose the optimal value of debt, would make an identical choice: it maximizes the utility
of the risk-averse agent.87

On the other hand, if the �rm already has debt (FS) in its capital structure, the agent will not consider the impact
of his decision on the value of those existing claims; he considers only the reduction in expected value of the new debt
issuance. Suppose the new debt issued, FJ , is subordinate. If the �rm defaults, senior debtholders are only made whole
if the cash �ow, x, exceeds FS/δ. While the agent's optimal decision, FJ , may increase welfare relative to selling the
entire claim in the equity market, it will not match the decision of the social planner, who must also account for the loss
in expected value imposed on senior debtholders.88

86Alternatively, the discount can apply to all cash �ows below some threshold greater than F + F0 to accommodate
potential costs of �nancial distress.

87This is, admittedly, a strong assumption, since the preferences of noise traders are unmodeled. Moreover, it does not
account for the potential cost of information acquisition - if this generates disutility for investors (and is not simply a
�nancial transfer to other agents in the economy), a social planner would want to discourage such information acquisition.

88If senior debtholders are rational and forward-looking, they would (i) expect the new issuance and (ii) pay less for
their claim in the �rst place. If the existing debt is also chosen by the owner of the asset (as is done when the debt
was issued by a private equity �rm in a leveraged buyout), then the owner of the asset would internalize this cost at the
earlier date, returning us to the socially-optimal capital structure.
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C.1.3 Tail Risk

While the main analysis of the paper focused on a two-state distribution, as we show in Appendix B.1, the payo�
distribution is �exible enough to accommodate N > 2 states. An interesting application of this more general setup is to
consider how issuing debt can help mitigate the e�ect of what we will term �tail risk�.

For example, suppose there are three states: s ∈ {L,M,H}, where GH �FOSD GM �FOSD GL, and

P[s = H] = bHq P[s = L] = bLq P[s = M ] = 1− (bH + bL)q,

0 ≤ bH , bL ≤ 1, bH + bL ≤ 1.

As z increases, �tail risk� increases � draws from the high and low state become more likely, while a draw from the
�middle� state becomes less probable. The expected value of the asset is now written

E[x] = VM + E[q](bHVH + bLVL − VM ),

and we can rede�ne ∆V ≡ bHVH + bLVL − VM .
Tail risk, or increased cash �ow uncertainty, is often proxied by the volatility of cash �ows. An increase in volatility

leaves the expected value of the asset unchanged; for an analogous result in our setup, it must be that bHVH+bLVL = VM ,
which implies that ∆V = 0. In this case, the optimal capital structure will consist of information-insensitive debt. Note,
however, that the equity in this setup is also information-insensitive. Such a capital structure provides no incentive for
investors in either market to learn, which is the �rst-best result for the agent.89 Because ∆E + ∆D = ∆V = 0 must
always hold, if information-sensitive debt is issued, it must be that ∆E 6= 0 and ∆D 6= 0. Of course, this implies that
|∆E|+ |∆D| > ∆V . Issuing information-sensitive debt creates �nancial securities which are more information-sensitive
than the asset itself!90

Note, however, that in our model, this is a special case of �tail risk�; in particular, the symmetry of the shock is
essential for the agent to issue information-insensitive debt. Suppose that bH increases so that ∆V > 0, and an increase
in z causes the expected value of the asset to increase � the cash �ow distribution becomes more positively-skewed. For
low values of debt, the intuition from above generally holds: ∆D will fall, ∆E will rise, and capital structure sensitivity
exceeds ∆V . However, if the face value increases su�ciently, debt will become positively exposed to the shock, and
issuing non-linear securities can actually reduce price uncertainty.

C.2 Market Segmentation

In Section 2, we assume that investors are, or can be, restricted to invest in either debt or equity. In delegated asset
management, fund managers are often provided with strict mandates about the securities in which they can invest; debt-
and equity-only funds are common.91 Even when the �nancial institution supports both equity and bond funds, at the
research level, segmentation can remain � for instance, there exists both an equity and a credit analyst for the technology
sector � consistent with the assumption that how much investors learn can be speci�c to a security's characteristics.

As we show in Appendix B.2, however, our results do not require that informed investors be segmented. Instead, it
must be that markets are imperfectly integrated, as de�ned by Chen and Knez (1995). In our model, debt and equity
markets are imperfectly integrated when the marginal investor in each market di�ers � note that this can occur even
when investors trade both securities, as long as the liquidity shocks across markets are imperfectly correlated.

We end by considering some of the evidence for imperfect integration across corporate debt and equity markets.92 In
analyzing the corporate debt market, Collin-Dufresne, Goldstein, and Martin (2001) note that (i) the standard pricing
factors proposed by structural models explain little of the changes in corporate bond spreads and (ii) there is a common
factor across all bonds which can explain much of the residual variation. Kapadia and Pu (2012) argue that the credit
and equity market securities for a given �rm move in the wrong direction too frequently over short horizons for the
markets to be integrated and propose limits to arbitrage as an explanation. Longsta�, Mithal, and Neis (2005) �nd
evidence that bond-speci�c liquidity, as well as a bond-market liquidity factor, can explain corporate bond spreads; the
existence of such pricing factors implies that the debt and equity markets are not perfectly integrated. Schaefer and
Strebulaev (2008) show that, while bonds are exposed to both the Fama-French SMB and HML factors, this sensitivity

89Investors are risk-neutral; any information acquired leaves unchanged the price they are willing to pay for the asset.
90The intuition is similar in other frameworks. If the asset's payo� is linear, increasing the volatility has no e�ect on

the value of the asset, but any non-linear claims on the asset (e.g., debt, equity) will be sensitive to volatility shocks.
91As shown in He and Xiong (2013), such restrictions can be optimal in the presence of moral hazard.
92There is also empirical evidence con�rming investor segmentation/specialization across a wide range of markets in-

cluding Kim and Stulz (1988) (domestic and foreign equity) and Gabaix, Krishnamurthy, and Vigneron (2007) (mortgage-
backed securities).
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is not solely driven by the bond's credit exposure, suggesting that a component of the bond's returns are driven by a
factor which extends beyond structural model fundamentals. Finally, note that the excess returns of capital structure
arbitrage trading strategies, as documented by Duarte, Longsta�, and Yu (2007), is consistent with the existence of
arbitrage across debt and equity markets.93

C.3 Extensions - Dynamic Issuance

C.3.1 Control Rights

In practice, the rights associated with equity ownership are negotiable - these including voting rights, for instance, or the
ability to veto proposed mergers and acquisitions. To maintain control over the �nancing decisions of the �rm, however,
the agent must retain ownership of some portion of the equity. Furthermore, some retention is generally required of the
owner after a �rm's initial public o�ering. When the agent retains some equity for future sale, it a�ects his decision
about how best to issue securities today.

Suppose, at T − k, that the agent has been hit with a liquidity shock � he would like to sell his entire ownership
claim immediately. We assume that he is required, however, to hold onto a fraction α of the �rm's equity until T −k+ j.
The variance of his proceeds can be written

∆E2V[(1− α)qE,T−k + αqE,T−k+j ] + ∆D2V[qD] + 2∆E∆DCov(qD, (1− α)qE,T−k + αqE,T−k+j).

Note how closely this resembles the static issuance problem: the agent now considers a �portfolio� of equity issuance,
however, split across multiple periods. As the required retention period increases (↑ j), or the required share retained
grows (↑ α), the agent's uncertainty about his liquidation price grows. Equity issuance becomes less desirable. It is
straightforward to show that the optimal face value of debt sets ∆D(F ∗) > ∆E(F ∗), and that F ∗ increases with both
the retention period and retention share.94

C.3.2 Timing

In a multi-period setting, equity issued today receives a portion of any dividend paid out from the proceeds of future debt
issuance. On the other hand, debt issued today is una�ected by the sale of equity in the future, assuming the proceeds
are not retained within the �rm. When agents must issue sequentially, this feature can generate a preference for which
security to issue �rst.

For simplicity, suppose the agent is restricted to issue at time-T and T − k, and that at either point in time, he is
restricted to issue either publicly-traded debt or equity, but cannot issue both. To focus on the role of risk reduction, we
set µz = zT−k = 0. There are three possible ways for the agent to structure his claims. (1) He can issue debt with face
value F at T − k, and sell his equity share at time-T . (2) He can sell a fraction, 1− α of his equity stake at T − k and
sell the remainder α at time-T . (3) He can sell the entire equity stake at T − k, and commit to issuing debt at time-T .95

If the agent issues debt at T-k, he receives pD,T−k = DL(F ) + qD,T−k∆D, where qD,T−k = qE,T−k as de�ned in
(25). At time-T, he receives pE,T = EL(F ) + q∆E(F ) for selling his equity stake. As a result, he chooses F to minimize:

∆D(F )2V[qD,T−k|zT−k] + ∆E(F )2V [q|zT−k] + 2∆D(F )∆E(F )Cov(qD,T−k, q|zT−k).

If, instead, the agent sells (1− α) of the �rm's equity at T-k, his choice of α minimizes:

((1− α)∆E)2 V [qE,T−k|zT−k] + (α∆E)2 V [q|zT−k] + 2α(1− α)∆E2Cov(qE,T−k, q|zT−k).

As is clear from the two expressions, when the two markets are otherwise identical, there is a direct correspondence
between the optimal decisions in both problems: (1 − α∗)∆E = ∆D(F ∗) . As a result the agent is indi�erent between
the �rst two options, assuming no restrictions on the choice of α and F .

On the other hand, if the �rm sells debt at time-T , equityholders receive pD,T = DL(F ) + q∆D(F ); the agent,
however, having sold his entire stake, receives nothing. Instead, at T − k, he receives

93They also note that following a capital structure arbitrage strategy does expose investors to systemic risk, a feature
which is absent in our model.

94Given the proposed liquidity shock, the agent may value future proceeds at a lower rate than any cash received
today. This will only increase his incentive to sell today, pushing him to issue more debt.

95Given that he has sold his entire equity claim at time-T-k, and therefore the control rights, he commits to issuing
debt prior to selling the equity.
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pE,T−k = EL(F ) + qE,T−k∆E(F ) + E[pD,T |zT−k]

= VL + qE,T−k∆V.

By selling the equity �rst, he is e�ectively selling the entire �rm at T − k; equityholders pay him now for the
dividend they expect to receive from the debt proceeds at time-T . On the one hand, this is bene�cial, in that the agent's
uncertainty about q exceeds his uncertainty about qE,T−k. On the other hand, he has lost the opportunity to diversify -
q and qE,T−k are imperfectly correlated. For small k, the latter outweighs the former, and the agent prefers one of the
�rst two options. That is, issuing equity before debt is suboptimal. When k is su�ciently high, the agent is indi�erent
between all three scenarios � he sets F ∗ →∞ in the �rst setting and α = 0 in the second.

C.4 Investment Financing: Debt and Equity

We now modify the setting of Section 4 to allow for mixed capital markets �nancing. Speci�cally, the agent must �nance
his investment at T − k using a mix of equity and debt. We will ignore the role of liquid assets here � their use will
closely follow what was shown in the main text. Our objective is to show under what conditions the agent opts to use
equity, as well as debt, for �nancing.

For tractability, we assume the agent cannot issue debt at T − k + j and so only sells any remaining equity; this
restriction tilts the terms in favor of debt issuance at T −k. As before, the agent is constrained to raise no more funds via
�nancing than are necessary for investment; to insure that he raises su�cient capital, we assume that the agent chooses
how much debt F (I) to issue, which in turn sets the fraction of equity sold α(I, F ) as the solution to

DL(F (I)) + (1− α(I, F ))EL(F ) = I.

It is straightforward to show that this implies ∂α(I,F )
∂F

> 0, i.e., the fraction of equity sold at T − k is decreasing in
the face value of debt used for �nancing. On the other hand, increasing F causes the information-sensitivity of equity to
fall ( ∂∆E

∂F
< 0). As a result, given that equity is also sold at T − k + j with a more uncertain price, this can make debt

issuance more valuable than selling equity. On the other hand, if the agent �nances the investment solely with debt, he
forfeits the opportunity to reduce the uncertainty of his �nancing terms by accessing (and diversifying with) the equity
market at T − k.

As before, when the level of investment is su�ciently low, e.g., if ∆D(F (I)) = 0, equity is preferable. Furthermore,
when the level of investment is su�ciently high, and the information-driven uncertainty at T − k + j is su�ciently low,
we can also show that the agent wants to �nance using debt and equity. We examine the underlying mechanism for
this result by considering the marginal value of reducing α(I, F ) (i.e., reducing F ) when the agent �nances his entire
investment through debt (α = 1). If doing so reduces the uncertainty of the proceeds, on the margin, then it must be
that at least some fraction of the investment is �nanced via equity.

First, we consider the marginal change in the variance of the agent's proceeds due to the shift in equity issuance
from time T − k + j to T − k. Of course, any shift in the issuance of equity to an earlier date reduces uncertainty:

−2∆E
∂α(I, F )

∂F
[∆E(F (I))V[qE,T−k+1] + ∆D(F (I))Cov(qD,T−k, qE,T−k+j)] .

Next, we consider the marginal change in uncertainty from lowering F due to the change in the information sensitivity
of each security:

−2 [GL(F (I))−GH(F (I))]
[
∆D(F (I))

(
V[qD,T−k]− Cov(qD,T−k, qE,T−k+j)

)
−∆E(F (I))

(
V[qE,T−k+j ]− Cov(qD,T−k, qE,T−k+j)

)]
.

Under the assumption of FOSD, GL(F ) > GH(F ). Holding �xed each security's information sensitivity, deferring
issuance until T − k + j leads to more volatile proceeds: V[qE,T−k+j ] > V[qD,T−k]. However, when V[qD,T−k] >
Cov(qD,T−k, qE,T−k+j) (i.e., the information-driven uncertainty at T − k + j is su�ciently low), the agent also wants
to diversify over time. When ∆D(F (I)) is su�ciently large (i.e., when the level of investment is su�ciently high), the
agent lowers the uncertainty of his proceeds by issuing equity along with debt when �nancing.

C.5 Illiquidity: Private then Public Issuance

We focus here on the within-market e�ect of illiquidity. We assume that at each date, the �rm has a choice to issue
private or public equity. If the �rm chooses to go public, it will remain public in all following periods. Moreover, if it
goes public, all shares issued freely trade in all following periods. If it remains private, the only shares which trade are
those which are issued in that period. For simplicity, we set T = 2.
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We work backwards, starting at t = 2. At this point, z is known by all agents, and no information is acquired � the
agent is indi�erent between issuing private or public equity, and α2 = 0. At t = 1, the agent optimally retains:

α1(z1, α0) =

E[q2−q1|z1]
(γ∆V )α0

+ V[q1|z1]− Cov[q1, q2|z1]

V[q2|z1] + V[q1|z1]− 2Cov[q1, q2|z1]
. (33)

Both investors form expectations about Φ(z); holding the number of shares for purchase �xed, the information
acquired is of equal value to both private and public investors. However, if the �rm remains private, investors can only
acquire α0(1−α1) shares, whereas going public allows investors to purchase a fraction 1−α0α1 > α0(1−α1) of the �rm.
As a result, private equity investors choose to acquire less information, lowering the variance of q1.

The agent must also consider the e�ect of information acquisition on his ability to take advantage of predictable
changes in the price: E[q2 − q1|z1]. If τz > τi(1 + τn), then the denominator of q1 is increasing in the precision of the
investors' private information. As a result, when (1− ρ)µz + ρz1 > 0, issuing publicly-traded securities lowers the price
today relative to the price in the private market. Furthermore, this induces the agent to retain more of his holdings for
issuance at the more uncertain q2. For both reasons, this makes issuing privately more attractive. On the other hand,
when (1 − ρ)µz + ρz1 < 0, issuing publicly-traded securities raises the price today relative to the price in the private
market, opening up the possibility that public issuance is preferable.

At t = 0, whether issued privately or publicly, investors will be able to purchase 1 − α0 shares. Private investors,
however, anticipate selling at t = 2, whereas public investors can trade in the following period. As shown in Section 6,
this implies that the variance of q0 is higher if the agent issues privately, assuming investors in the illiquid market obtain
su�cient information. If this were his only opportunity to issue, the agent would optimally do so in the public markets.
Private issuance now, however, preserves the option to issue privately at t = 1. If that option is su�ciently valuable, the
agent may optimally choose to sell his stake in the private markets.
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